Suppr超能文献

理解用于增强光催化太阳能燃料生产的氮化碳中的电荷传输。

Understanding Charge Transport in Carbon Nitride for Enhanced Photocatalytic Solar Fuel Production.

作者信息

Rahman Mohammad Z, Mullins C Buddie

机构信息

McKetta Department of Chemical Engineering and Department of Chemistry, Texas Materials Institute and Center for Electrochemistry , The University of Texas at Austin , Austin , Texas 78712-1589 , United States.

出版信息

Acc Chem Res. 2019 Jan 15;52(1):248-257. doi: 10.1021/acs.accounts.8b00542. Epub 2018 Dec 31.

Abstract

Photocatalytic solar fuel production, for example, production of hydrogen via water-splitting, is an effective means of chemical storage of solar energy and provides a potential option for achieving a zero-emissions energy system. Conveniently, hydrogen can be converted back to electricity either via fuel cells or through combustion in gas turbines, or it can be mixed in low concentrations with natural gas or biogas for combustion in existing power plants. The cornerstone of a practical solar fuel production process is a stable, efficient, and scalable photocatalyst (a semiconductor material that accommodates photon absorption, charge carrier generation and transport, and catalytic reactions). Therefore, the quest for suitable photocatalyst materials is an ongoing process. Recently, carbon nitride (CN) has attracted widespread interest as a metal-free, earth-abundant, and highly stable photocatalyst. However, the catalytic efficiency of CN is not satisfactory because of its poor charge transport attributes. There is a direct relation between the photocatalytic efficiency and charge transport because the basic principle of light-promoted overall photodecomposition of water into H and O molecules (or, generally speaking, photoredox reactions) relies on separation and subsequent transfer of excited-state electron-hole pairs to relative redox couples. However, the excited states last for a very short time, typically nanoseconds to microseconds in liquids, and unless they are separated within this time frame, the excited-state electron-hole pairs undergo recombination with release of the captured light energy as heat or photon emission. To utilize light in a form other than heat or emitted photons by avoiding the recombination of excited-state electron-hole pairs, charged excitons must be scavenged before the absorption of subsequent photons to sustain a multielectron photoredox reaction. Otherwise, the extraction of charges becomes more difficult. This imposes a potential efficiency-limiting factor. An enhancement in water to hydrogen conversion efficiency in CN therefore requires the use of precious-metal cocatalysts (e.g., Pt) and sacrificial electron donor/acceptors to facilitate multielectron/multiproton transfers to overcome the high kinetic barriers. The use of Pt and sacrificial agents is not consistent with the notion of low-cost and sustainable hydrogen production from water. CN must overcome this dependence to stand out as a truly scalable photocatalyst. To make progress, the foremost requirement is to attain an in-depth understanding of the fundamental charge transport phenomena needed for the rational design of CN-based photocatalysts. In this Account, therefore, our aim is to provide a synopsis of current understanding and progress regarding charge-transport-related phenomena (e.g., recombination, trapping, transfer of charge carriers, etc.) and to discuss the effects of charge transport in enhancing the apparent quantum yield of hydrogen production in CN. This understanding is necessary to broaden the scope of CN for other catalytic applications, for example, efficient CO reduction to methanol or methane, fixation of nitrogen to ammonia, and use as an active material in solar cells. We also identify research gaps and issues to be addressed for a more clear elucidation of charge-transport-related phenomena in CN. Thus, this Account may inspire new research opportunities for tuning the extrinsic/intrinsic photophysicochemical properties of CN by rational design to attain the most favorable properties for improved catalytic efficiency.

摘要

例如,通过光催化进行太阳能燃料生产,即通过水分解制氢,是太阳能化学存储的有效手段,为实现零排放能源系统提供了一个潜在选择。方便的是,氢气可以通过燃料电池或在燃气轮机中燃烧转化回电能,或者可以与天然气或沼气以低浓度混合,用于现有发电厂的燃烧。实际太阳能燃料生产过程的基石是一种稳定、高效且可扩展的光催化剂(一种能够吸收光子、产生并传输电荷载流子以及催化反应的半导体材料)。因此,寻找合适的光催化剂材料是一个持续进行的过程。最近,氮化碳(CN)作为一种无金属、储量丰富且高度稳定的光催化剂引起了广泛关注。然而,由于其电荷传输特性较差,CN的催化效率并不令人满意。光催化效率与电荷传输之间存在直接关系,因为光促进水整体光分解为H和O分子(或者一般来说,光氧化还原反应)的基本原理依赖于激发态电子 - 空穴对的分离以及随后向相关氧化还原对的转移。然而,激发态持续时间非常短,在液体中通常为纳秒到微秒,除非它们在这个时间范围内被分离,否则激发态电子 - 空穴对会发生复合,以热或光子发射的形式释放捕获的光能。为了通过避免激发态电子 - 空穴对的复合来以除热或发射光子之外的形式利用光,必须在吸收后续光子之前清除带电激子,以维持多电子光氧化还原反应。否则,电荷提取会变得更加困难。这构成了一个潜在的效率限制因素。因此,提高CN中水到氢的转化效率需要使用贵金属助催化剂(例如Pt)和牺牲电子供体/受体,以促进多电子/多质子转移,克服高动力学障碍。使用Pt和牺牲剂与从水中低成本、可持续制氢的概念不一致。CN必须克服这种依赖性,才能成为真正可扩展的光催化剂。为了取得进展,首要要求是深入了解基于CN的光催化剂合理设计所需的基本电荷传输现象。因此,在本综述中,我们的目的是概述当前对与电荷传输相关现象(例如复合、捕获、电荷载流子转移等)的理解和进展,并讨论电荷传输对提高CN中氢气产生表观量子产率的影响。这种理解对于扩大CN在其他催化应用中的范围是必要的,例如将CO高效还原为甲醇或甲烷、将氮固定为氨以及用作太阳能电池中的活性材料。我们还确定了研究差距和需要解决的问题,以便更清楚地阐明CN中与电荷传输相关的现象。因此,本综述可能会激发新的研究机会,通过合理设计来调节CN的外在/内在光物理化学性质,以获得最有利的性质,提高催化效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验