Bhattacharjee T, Wani I S, Sheikh S, Clark I T, Okawa T, Guo S, Bhattacharjee P P, Tsuji N
Department of Materials Science and Engineering, Kyoto University, Kyoto, Japan.
Elements Strategy Initiative for Structural Materials (ESISM), Kyoto University, Kyoto, Japan.
Sci Rep. 2018 Feb 19;8(1):3276. doi: 10.1038/s41598-018-21385-y.
Nano-lamellar (L1 + B2) AlCoCrFeNi eutectic high entropy alloy (EHEA) was processed by cryo-rolling and annealing. The EHEA developed a novel hierarchical microstructure featured by fine lamellar regions consisting of FCC lamellae filled with ultrafine FCC grains (average size 200-250 nm) and B2 lamellae, and coarse non-lamellar regions consisting of ultrafine FCC (average size ~200-250 nm), few coarse recrystallized FCC grains and rather coarse unrecrystallized B2 phase (2.5 µm). This complex and hierarchical microstructure originated from differences in strain-partitioning amongst the constituent phases, affecting the driving force for recrystallization. The hierarchical microstructure of the cryo-rolled and annealed material resulted in simultaneous enhancement in strength (Yield Strength/YS: 1437 ± 26 MPa, Ultimate Tensile Strength/UTS: 1562 ± 33 MPa) and ductility (elongation to failure/e ~ 14 ± 1%) as compared to the as-cast as well as cold-rolled and annealed materials. The present study for the first time demonstrated that cryo-deformation and annealing could be a novel microstructural design strategy for overcoming strength-ductility trade off in multiphase high entropy alloys.
通过低温轧制和退火处理了纳米层状(L1 + B2)AlCoCrFeNi共晶高熵合金(EHEA)。该EHEA形成了一种新型的分级微观结构,其特征在于由填充有超细FCC晶粒(平均尺寸约200 - 250nm)的FCC薄片和B2薄片组成的细层状区域,以及由超细FCC(平均尺寸约200 - 250nm)、少量粗大再结晶FCC晶粒和相当粗大的未再结晶B2相(约2.5μm)组成的粗大非层状区域。这种复杂的分级微观结构源于各组成相之间应变分配的差异,影响了再结晶的驱动力。与铸态以及冷轧和退火材料相比,低温轧制和退火材料的分级微观结构导致强度(屈服强度/YS:1437±26MPa,抗拉强度/UTS:1562±33MPa)和延展性(断裂伸长率/e约14±1%)同时提高。本研究首次表明,低温变形和退火可能是一种克服多相高熵合金中强度-延展性权衡的新型微观结构设计策略。