State Key Laboratory of Advanced Special Steel & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai, 200072, China.
Laboratory for Microstructures, Shanghai University, Shanghai, 200444, China.
Nat Commun. 2019 Jan 30;10(1):489. doi: 10.1038/s41467-019-08460-2.
Realizing improved strength-ductility synergy in eutectic alloys acting as in situ composite materials remains a challenge in conventional eutectic systems, which is why eutectic high-entropy alloys (EHEAs), a newly-emerging multi-principal-element eutectic category, may offer wider in situ composite possibilities. Here, we use an AlCoCrFeNi EHEA to engineer an ultrafine-grained duplex microstructure that deliberately inherits its composite lamellar nature by tailored thermo-mechanical processing to achieve property combinations which are not accessible to previously-reported reinforcement methodologies. The as-prepared samples exhibit hierarchically-structural heterogeneity due to phase decomposition, and the improved mechanical response during deformation is attributed to both a two-hierarchical constraint effect and a self-generated microcrack-arresting mechanism. This work provides a pathway for strengthening eutectic alloys and widens the design toolbox for high-performance materials based upon EHEAs.
在传统的共晶体系中,实现作为原位复合材料的共晶合金的强度-延性协同改善仍然是一个挑战,这就是为什么共晶高熵合金(EHEA)作为一种新兴的多主元共晶类别,可能提供更广泛的原位复合材料可能性。在这里,我们使用 AlCoCrFeNi EHEA 来设计超细晶双相微观结构,通过定制的热机械处理来故意继承其复合材料层状性质,以实现以前报道的增强方法无法达到的性能组合。由于相分解,制备的样品表现出层次结构的不均匀性,变形过程中的机械响应的改善归因于两个层次的约束效应和自产生的微裂纹止动机制。这项工作为增强共晶合金提供了一种途径,并拓宽了基于 EHEA 的高性能材料的设计工具箱。