Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet building 220, 2800 Kgs. Lyngby, Denmark.
Eberhard-Karls-Universität Tübingen, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Mikrobiologie / Biotechnologie, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
Sci Rep. 2018 Feb 19;8(1):3230. doi: 10.1038/s41598-018-21507-6.
Kirromycin is the main product of the soil-dwelling Streptomyces collinus Tü 365. The elucidation of the biosynthetic pathway revealed that the antibiotic is synthesised via a unique combination of trans-/cis-AT type I polyketide synthases and non-ribosomal peptide synthetases (PKS I/NRPS). This was the first example of an assembly line integrating the three biosynthetic principles in one pathway. However, information about other enzymes involved in kirromycin biosynthesis remained scarce. In this study, genes encoding tailoring enzymes KirM, KirHVI, KirOI, and KirOII, and the putative crotonyl-CoA reductase/carboxylase KirN were deleted, complemented, and the emerged products analysed by HPLC-HRMS and MS/MS. Derivatives were identified in mutants ΔkirM, ΔkirHVI, ΔkirOI, and ΔkirOII. The products of ΔkirOI, ΔkirOII, and kirHVI were subjected to 2D-NMR for structure elucidation. Our results enabled functional assignment of those enzymes, demonstrating their involvement in kirromycin tailoring. In the ΔkirN mutant, the production of kirromycin was significantly decreased. The obtained data enabled us to clarify the putative roles of the studied enzymes, ultimately allowing us to fill many of the missing gaps in the biosynthesis of the complex antibiotic. Furthermore, this collection of mutants can serve as a toolbox for generation of new kirromycins.
基洛霉素是土壤栖居链霉菌 Tü 365 的主要产物。生物合成途径的阐明表明,该抗生素是通过独特的反式/顺式 AT 型 I 聚酮合酶和非核糖体肽合酶(PKS I/NRPS)组合合成的。这是第一个将三种生物合成原理集成在一条途径中的装配线的例子。然而,关于参与基洛霉素生物合成的其他酶的信息仍然很少。在这项研究中,缺失、互补了编码修饰酶 KirM、KirHVI、KirOI 和 KirOII 以及假定的巴豆酰辅酶 A 还原酶/羧化酶 KirN 的基因,并通过 HPLC-HRMS 和 MS/MS 分析了出现的产物。在突变体 ΔkirM、ΔkirHVI、ΔkirOI 和 ΔkirOII 中鉴定出了衍生物。对 ΔkirOI、ΔkirOII 和 kirHVI 的产物进行了 2D-NMR 结构阐明。我们的结果能够对这些酶进行功能分配,证明它们参与了基洛霉素的修饰。在 ΔkirN 突变体中,基洛霉素的产量显著降低。获得的数据使我们能够阐明研究酶的假定作用,最终使我们能够阐明复杂抗生素生物合成中许多缺失的环节。此外,该突变体集合可作为生成新基洛霉素的工具包。