Suppr超能文献

基于 FCM 加权概率神经网络的结构磁共振成像阿尔茨海默病检测。

Alzheimer disease detection from structural MR images using FCM based weighted probabilistic neural network.

机构信息

Hindusthan College of Engineering and Technology, Coimbatore, India.

Rajagiri School of Engineering and Technology, Cochin, India.

出版信息

Brain Imaging Behav. 2019 Feb;13(1):87-110. doi: 10.1007/s11682-018-9831-2.

Abstract

An early intervention of Alzheimer's disease (AD) is highly essential due to the fact that this neuro degenerative disease generates major life-threatening issues, especially memory loss among patients in society. Moreover, categorizing NC (Normal Control), MCI (Mild Cognitive Impairment) and AD early in course allows the patients to experience benefits from new treatments. Therefore, it is important to construct a reliable classification technique to discriminate the patients with or without AD from the bio medical imaging modality. Hence, we developed a novel FCM based Weighted Probabilistic Neural Network (FWPNN) classification algorithm and analyzed the brain images related to structural MRI modality for better discrimination of class labels. Initially our proposed framework begins with brain image normalization stage. In this stage, ROI regions related to Hippo-Campus (HC) and Posterior Cingulate Cortex (PCC) from the brain images are extracted using Automated Anatomical Labeling (AAL) method. Subsequently, nineteen highly relevant AD related features are selected through Multiple-criterion feature selection method. At last, our novel FWPNN classification algorithm is imposed to remove suspicious samples from the training data with an end goal to enhance the classification performance. This newly developed classification algorithm combines both the goodness of supervised and unsupervised learning techniques. The experimental validation is carried out with the ADNI subset and then to the Bordex-3 city dataset. Our proposed classification approach achieves an accuracy of about 98.63%, 95.4%, 96.4% in terms of classification with AD vs NC, MCI vs NC and AD vs MCI. The experimental results suggest that the removal of noisy samples from the training data can enhance the decision generation process of the expert systems.

摘要

由于这种神经退行性疾病会给患者带来严重的生命威胁,尤其是导致患者失忆,因此对阿尔茨海默病(AD)进行早期干预是非常必要的。此外,在病程早期对 NC(正常对照)、MCI(轻度认知障碍)和 AD 进行分类,可以使患者从新的治疗中获益。因此,构建一种可靠的分类技术,从生物医学成像模式中区分 AD 患者和非 AD 患者是非常重要的。因此,我们开发了一种新的基于 FCM 的加权概率神经网络(FWPNN)分类算法,并分析了与结构 MRI 模式相关的脑图像,以更好地区分类别标签。首先,我们提出的框架从脑图像归一化阶段开始。在这个阶段,使用自动解剖标记(AAL)方法从脑图像中提取与海马体(HC)和后扣带回皮层(PCC)相关的 ROI 区域。随后,通过多准则特征选择方法选择 19 个与 AD 高度相关的特征。最后,我们的新型 FWPNN 分类算法被用来从训练数据中剔除可疑样本,以提高分类性能。这个新开发的分类算法结合了监督学习和无监督学习技术的优点。实验验证是在 ADNI 子集上进行的,然后在 Bordex-3 城市数据集上进行。我们提出的分类方法在 AD 与 NC、MCI 与 NC 和 AD 与 MCI 的分类方面的准确率分别约为 98.63%、95.4%和 96.4%。实验结果表明,从训练数据中剔除噪声样本可以增强专家系统的决策生成过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验