From the Department of Radiology (S.B., L.W., D.P., D.B., A.R., S.D., H.P.S., F.S.), Division of Medical Image Computing (P.F.J., K.H.M.H.), and Department of Medical Physics in Radiology (F.B.L., T.A.K.), German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Erlangen, Germany (F.B.L.); Radiological Practice at the ATOS Clinic Heidelberg, Heidelberg, Germany (W.L.); and Radiology Center Mannheim, Mannheim, Germany (H.D.).
Radiology. 2018 Jun;287(3):761-770. doi: 10.1148/radiol.2017170273. Epub 2018 Feb 20.
Purpose To evaluate a radiomics model of Breast Imaging Reporting and Data System (BI-RADS) 4 and 5 breast lesions extracted from breast-tissue-optimized kurtosis magnetic resonance (MR) imaging for lesion characterization by using a sensitivity threshold similar to that of biopsy. Materials and Methods This institutional study included 222 women at two independent study sites (site 1: training set of 95 patients; mean age ± standard deviation, 58.6 years ± 6.6; 61 malignant and 34 benign lesions; site 2: independent test set of 127 patients; mean age, 58.2 years ± 6.8; 61 malignant and 66 benign lesions). All women presented with a finding suspicious for cancer at x-ray mammography (BI-RADS 4 or 5) and an indication for biopsy. Before biopsy, diffusion-weighted MR imaging (b values, 0-1500 sec/mm) was performed by using 1.5-T imagers from different MR imaging vendors. Lesions were segmented and voxel-based kurtosis fitting adapted to account for fat signal contamination was performed. A radiomics feature model was developed by using a random forest regressor. The fixed model was tested on an independent test set. Conventional interpretations of MR imaging were also assessed for comparison. Results The radiomics feature model reduced false-positive results from 66 to 20 (specificity 70.0% [46 of 66]) at the predefined sensitivity of greater than 98.0% [60 of 61] in the independent test set, with BI-RADS 4a and 4b lesions benefiting from the analysis (specificity 74.0%, [37 of 50]; 60.0% [nine of 15]) and BI-RADS 5 lesions showing no added benefit. The model significantly improved specificity compared with the median apparent diffusion coefficient (P < .001) and apparent kurtosis coefficient (P = .02) alone. Conventional reading of dynamic contrast material-enhanced MR imaging provided sensitivity of 91.8% (56 of 61) and a specificity of 74.2% (49 of 66). Accounting for fat signal intensity during fitting significantly improved the area under the curve of the model (P = .001). Conclusion A radiomics model based on kurtosis diffusion-weighted imaging performed by using MR imaging machines from different vendors allowed for reliable differentiation between malignant and benign breast lesions in both a training and an independent test data set. RSNA, 2018 Online supplemental material is available for this article.
目的 利用乳腺组织优化的峰度磁共振成像(MR)评估乳腺影像报告和数据系统(BI-RADS)4 和 5 级乳腺病变的放射组学模型,通过使用类似于活检的敏感度阈值来对病变进行特征描述。
材料与方法 该机构研究纳入了 222 名在两个独立研究地点的女性(第 1 个研究地点:训练集 95 例患者,平均年龄±标准差为 58.6 岁±6.6;恶性病变 61 例,良性病变 34 例;第 2 个研究地点:独立测试集 127 例患者,平均年龄为 58.2 岁±6.8;恶性病变 61 例,良性病变 66 例)。所有女性均因 X 射线乳腺摄影(BI-RADS 4 或 5)发现疑似癌症的表现且需要进行活检。在活检前,使用来自不同磁共振成像供应商的 1.5-T 成像仪进行扩散加权 MR 成像(b 值为 0-1500 sec/mm)。对病变进行分割,并进行基于体素的峰度拟合以校正脂肪信号污染。采用随机森林回归器建立放射组学特征模型。在独立测试集上对固定模型进行测试。还评估了磁共振成像的常规解读以进行比较。
结果 在独立测试集上,放射组学特征模型将假阳性结果从 66 例减少到 20 例(特异度为 70.0%[61 例中的 46 例]),敏感度大于 98.0%[61 例中的 60 例],BI-RADS 4a 和 4b 病变获益于该分析(特异度为 74.0%[50 例中的 37 例],60.0%[15 例中的 9 例]),而 BI-RADS 5 病变无明显获益。与中位数表观扩散系数(P<0.001)和表观峰度系数(P=0.02)相比,该模型显著提高了特异性。动态对比增强磁共振成像的常规阅读提供了 91.8%(61 例中的 56 例)的敏感度和 74.2%(66 例中的 49 例)的特异性。在拟合过程中考虑脂肪信号强度可显著提高模型的曲线下面积(P=0.001)。
结论 基于不同供应商的 MR 成像机器进行的峰度扩散加权成像的放射组学模型能够在训练集和独立测试数据集之间可靠地区分良恶性乳腺病变。
美国放射学会,2018
在线补充材料为本研究提供。