Suppr超能文献

基于乳腺病变表观扩散系数图计算的病变分割变化下放射组学特征的稳定性

Stability of Radiomic Features against Variations in Lesion Segmentations Computed on Apparent Diffusion Coefficient Maps of Breast Lesions.

作者信息

Pistel Mona, Brock Luise, Laun Frederik Bernd, Erber Ramona, Weiland Elisabeth, Uder Michael, Wenkel Evelyn, Ohlmeyer Sabine, Bickelhaupt Sebastian

机构信息

Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.

Siemens Healthineers AG, 91052 Erlangen, Germany.

出版信息

Diagnostics (Basel). 2024 Jul 3;14(13):1427. doi: 10.3390/diagnostics14131427.

Abstract

Diffusion-weighted imaging (DWI) combined with radiomics can aid in the differentiation of breast lesions. Segmentation characteristics, however, might influence radiomic features. To evaluate feature stability, we implemented a standardized pipeline featuring shifts and shape variations of the underlying segmentations. A total of 103 patients were retrospectively included in this IRB-approved study after multiparametric diagnostic breast 3T MRI with a spin-echo diffusion-weighted sequence with echoplanar readout (b-values: 50, 750 and 1500 s/mm). Lesion segmentations underwent shifts and shape variations, with >100 radiomic features extracted from apparent diffusion coefficient (ADC) maps for each variation. These features were then compared and ranked based on their stability, measured by the Overall Concordance Correlation Coefficient (OCCC) and Dynamic Range (DR). Results showed variation in feature robustness to segmentation changes. The most stable features, excluding shape-related features, were FO (Mean, Median, RootMeanSquared), GLDM (DependenceNonUniformity), GLRLM (RunLengthNonUniformity), and GLSZM (SizeZoneNonUniformity), which all had OCCC and DR > 0.95 for both shifting and resizing the segmentation. Perimeter, MajorAxisLength, MaximumDiameter, PixelSurface, MeshSurface, and MinorAxisLength were the most stable features in the Shape category with OCCC and DR > 0.95 for resizing. Considering the variability in radiomic feature stability against segmentation variations is relevant when interpreting radiomic analysis of breast DWI data.

摘要

扩散加权成像(DWI)与放射组学相结合有助于乳腺病变的鉴别。然而,分割特征可能会影响放射组学特征。为了评估特征稳定性,我们实施了一个标准化流程,该流程具有基础分割的移位和形状变化。在一项经机构审查委员会(IRB)批准的研究中,我们回顾性纳入了103例患者,这些患者均接受了多参数乳腺3T磁共振成像(MRI)检查,采用具有回波平面读出的自旋回波扩散加权序列(b值:50、750和1500 s/mm²)。对病变分割进行移位和形状变化处理,针对每种变化从表观扩散系数(ADC)图中提取超过100个放射组学特征。然后根据这些特征的稳定性进行比较和排序,稳定性通过总体一致性相关系数(OCCC)和动态范围(DR)来衡量。结果显示,各特征对分割变化的稳健性存在差异。最稳定的特征(不包括与形状相关的特征)为一阶统计量(FO,均值、中位数、均方根)、灰度共生矩阵(GLDM,依赖非均匀性)、灰度游程长度矩阵(GLRLM,游程长度非均匀性)和灰度大小区域矩阵(GLSZM,大小区域非均匀性),对于分割的移位和调整大小,这些特征的OCCC和DR均>0.95。周长、长轴长度、最大直径、像素表面积、网格表面积和短轴长度是形状类别中最稳定的特征,对于调整大小,其OCCC和DR>0.95。在解释乳腺DWI数据的放射组学分析时,考虑放射组学特征稳定性针对分割变化的变异性是很有必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3cc3/11241112/9e16830fb5c0/diagnostics-14-01427-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验