Suppr超能文献

利用光吸收性矿物质和飞秒激光实现硬组织的外源性矿化;以牙釉质为例。

Exogenous mineralization of hard tissues using photo-absorptive minerals and femto-second lasers; the case of dental enamel.

机构信息

School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK.

Leeds Dental School, Worsley Building, University of Leeds, Leeds LS2 9JT, UK.

出版信息

Acta Biomater. 2018 Apr 15;71:86-95. doi: 10.1016/j.actbio.2018.02.012. Epub 2018 Feb 17.

Abstract

UNLABELLED

A radical new methodology for the exogenous mineralization of hard tissues is demonstrated in the context of laser-biomaterials interaction. The proposed approach is based on the use of femtosecond pulsed lasers (fs) and Fe-doped calcium phosphate minerals (specifically in this work fluorapatite powder containing FeO nanoparticles (NP)). A layer of the synthetic powder is applied to the surface of eroded bovine enamel and is irradiated with a fs laser (1040 nm wavelength, 1 GHz repetition rate, 150 fs pulse duration and 0.4 W average power). The FeO NPs absorb the light and may act as thermal antennae, dissipating energy to the vicinal mineral phase. Such a photothermal process triggers the sintering and densification of the surrounding calcium phosphate crystals thereby forming a new, dense layer of typically ∼20 μm in thickness, which is bonded to the underlying surface of the natural enamel. The dispersed iron oxide NPs, ensure the localization of temperature excursion, minimizing collateral thermal damage to the surrounding natural tissue during laser irradiation. Simulated brushing trials (pH cycle and mechanical force) on the synthetic layer show that the sintered material is more acid resistant than the natural mineral of enamel. Furthermore, nano-indentation confirms that the hardness and Young's modulus of the new layers are significantly more closely matched to enamel than current restorative materials used in clinical dentistry. Although the results presented herein are exemplified in the context of bovine enamel restoration, the methodology may be more widely applicable to human enamel and other hard-tissue regenerative engineering.

STATEMENT OF SIGNIFICANCE

In this work we provide a new methodology for the mineralisation of dental hard tissues using femtosecond lasers and iron doped biomaterials. In particular, we demonstrate selective laser sintering of an iron doped fluorapatite on the surface of eroded enamel under low average power and mid-IR wavelength and the formation of a new layer to substitute the removed material. The new layer is evaluated through simulated brushing trials and nano-indentation. From the results we can conclude that is more acid resistant than natural enamel while, its mechanical properties are superior to that of current restorative materials. To the best of our knowledge this is the first time that someone demonstrated, laser sintering and bonding of calcium phosphate biomaterials on hard tissues. Although we here we discuss the case of dental enamel, similar approach can be adopted for other hard tissues, leading to new strategies for the fixation of bone/tooth defects.

摘要

未加标签

在激光-生物材料相互作用的背景下,展示了一种用于硬组织外源性矿化的全新方法。所提出的方法基于使用飞秒脉冲激光(fs)和掺杂铁的磷酸钙矿物质(具体在这项工作中是含有 FeO 纳米颗粒(NP)的氟磷灰石粉末)。一层合成粉末被施加到侵蚀的牛牙釉质表面,并使用飞秒激光(1040nm 波长,1GHz 重复率,150fs 脉冲持续时间和 0.4W 平均功率)照射。FeO NPs 吸收光并可以充当热天线,将能量耗散到邻近的矿物相。这种光热过程触发周围磷酸钙晶体的烧结和致密化,从而形成新的、通常约 20μm 厚的致密层,该层与天然牙釉质的下面的表面结合。分散的氧化铁 NPs 确保了温度升高的定位,从而最大限度地减少了激光辐照期间对周围天然组织的热损伤。对合成层进行的模拟刷牙试验(pH 循环和机械力)表明,烧结材料比天然牙釉质更耐酸。此外,纳米压痕证实,新层的硬度和杨氏模量与牙釉质更匹配,而不是临床牙科中使用的当前修复材料。虽然本文介绍的结果是在牛牙釉质修复的背景下举例说明,但该方法可能更广泛地适用于人类牙釉质和其他硬组织再生工程。

意义声明

在这项工作中,我们使用飞秒激光和铁掺杂生物材料提供了一种用于牙硬组织矿化的新方法。特别是,我们在低平均功率和中红外波长下证明了侵蚀牙釉质表面上掺杂铁的氟磷灰石的选择性激光烧结,并形成了新的层以替代去除的材料。通过模拟刷牙试验和纳米压痕评估新层。从结果我们可以得出结论,它比天然牙釉质更耐酸,而其机械性能优于当前的修复材料。据我们所知,这是第一次有人证明了在硬组织上烧结和键合磷酸钙生物材料。虽然我们在这里讨论了牙釉质的情况,但类似的方法可以用于其他硬组织,从而为固定骨/牙缺陷提供新的策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验