Goel Parul, Jumpertz Thorsten, Tichá Anežka, Ogorek Isabella, Mikles David C, Hubalek Martin, Pietrzik Claus U, Strisovsky Kvido, Schmidt Boris, Weggen Sascha
Department of Neuropathology, Heinrich-Heine University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany; Clemens Schoepf Institute for Organic Chemistry and Biochemistry, Technische Universitaet Darmstadt, Alarich-Weiss-Strasse 4-8, 64287 Darmstadt, Germany.
Department of Neuropathology, Heinrich-Heine University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany.
Bioorg Med Chem Lett. 2018 May 1;28(8):1417-1422. doi: 10.1016/j.bmcl.2018.02.017. Epub 2018 Feb 9.
Rhomboids are intramembrane serine proteases with diverse physiological functions in organisms ranging from archaea to humans. Crystal structure analysis has provided a detailed understanding of the catalytic mechanism, and rhomboids have been implicated in various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has lagged behind, and previously described small molecule inhibitors displayed insufficient potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of novel scaffolds with reduced liabilities and the possibility for broad structural variations. Docking studies with the E. coli rhomboid GlpG indicated that 2-styryl substituted benzoxazinones might comprise novel rhomboid inhibitors. Protease in vitro assays confirmed activity of 2-styryl substituted benzoxazinones against GlpG but not against the soluble serine protease α-chymotrypsin. Furthermore, mass spectrometry analysis demonstrated covalent modification of the catalytic residue Ser201, corroborating the predicted mechanism of inhibition and the formation of an acyl enzyme intermediate. In conclusion, 2-styryl substituted benzoxazinones are a novel rhomboid inhibitor scaffold with ample opportunity for optimization.
菱形蛋白酶是膜内丝氨酸蛋白酶,在从古生菌到人类的生物体中具有多种生理功能。晶体结构分析已对其催化机制有了详细了解,并且菱形蛋白酶与多种疾病背景相关。不幸的是,特异性菱形蛋白酶抑制剂的设计滞后,先前描述的小分子抑制剂显示出效力不足和/或选择性不够。我们采用计算机辅助方法,致力于发现具有更少缺陷且有广泛结构变异可能性的新型支架。对大肠杆菌菱形蛋白酶GlpG的对接研究表明,2-苯乙烯基取代的苯并恶嗪酮可能构成新型菱形蛋白酶抑制剂。蛋白酶体外试验证实了2-苯乙烯基取代的苯并恶嗪酮对GlpG有活性,但对可溶性丝氨酸蛋白酶α-胰凝乳蛋白酶无活性。此外,质谱分析证明了催化残基Ser201的共价修饰,证实了预测的抑制机制以及酰基酶中间体的形成。总之,2-苯乙烯基取代的苯并恶嗪酮是一种新型菱形蛋白酶抑制剂支架,有充分的优化机会。