Pharmaceutical Sciences, Roche Pharmaceutical Research & Early Development, Roche Innovation Center, Basel, Switzerland.
Translational Imaging Science Oncology, Roche Pharmaceutical Research & Early Development, Roche Innovation Center, Basel, Switzerland.
Clin Cancer Res. 2018 Jul 15;24(14):3325-3333. doi: 10.1158/1078-0432.CCR-17-2953. Epub 2018 Feb 20.
Optimal dosing is critical for immunocytokine-based cancer immunotherapy to maximize efficacy and minimize toxicity. Cergutuzumab amunaleukin (CEA-IL2v) is a novel CEA-targeted immunocytokine. We set out to develop a mathematical model to predict intratumoral CEA-IL2v concentrations following various systemic dosing intensities. Sequential measurements of CEA-IL2v plasma concentrations in 74 patients with solid tumors were applied in a series of differential equations to devise a model that also incorporates the peripheral concentrations of IL2 receptor-positive cell populations (i.e., CD8, CD4, NK, and B cells), which affect tumor bioavailability of CEA-IL2v. Imaging data from a subset of 14 patients were subsequently utilized to additionally predict antibody uptake in tumor tissues. We created a pharmacokinetic/pharmacodynamic mathematical model that incorporates the expansion of IL2R-positive target cells at multiple dose levels and different schedules of CEA-IL2v. Model-based prediction of drug levels correlated with the concentration of IL2R-positive cells in the peripheral blood of patients. The pharmacokinetic model was further refined and extended by adding a model of antibody uptake, which is based on drug dose and the biological properties of the tumor. predictions of our model correlated with imaging data and demonstrated that a dose-dense schedule comprising escalating doses and shortened intervals of drug administration can improve intratumoral drug uptake and overcome consumption of CEA-IL2v by the expanding population of IL2R-positive cells. The model presented here allows simulation of individualized treatment plans for optimal dosing and scheduling of immunocytokines for anticancer immunotherapy. .
优化剂量对于基于免疫细胞因子的癌症免疫疗法至关重要,可最大限度地提高疗效并降低毒性。Cergutuzumab amunaleukin(CEA-IL2v)是一种新型的 CEA 靶向免疫细胞因子。我们旨在开发一种数学模型,以预测不同全身给药强度下肿瘤内 CEA-IL2v 浓度。将 74 名实体瘤患者的 CEA-IL2v 血浆浓度连续测量应用于一系列微分方程中,设计出一种模型,该模型还纳入了影响 CEA-IL2v 肿瘤生物利用度的外周 IL2 受体阳性细胞群体(即 CD8、CD4、NK 和 B 细胞)的外周浓度。随后,对 14 名患者中的亚组进行了成像数据,以进一步预测肿瘤组织中的抗体摄取。我们创建了一个药代动力学/药效学数学模型,该模型纳入了在多个剂量水平和不同 CEA-IL2v 方案下,IL2R 阳性靶细胞的扩增。基于模型的药物水平预测与患者外周血中 IL2R 阳性细胞的浓度相关。通过添加基于药物剂量和肿瘤生物学特性的抗体摄取模型,对药代动力学模型进行了进一步的细化和扩展。我们模型的预测与成像数据相关,表明包括递增剂量和缩短药物给药间隔的密集剂量方案可以提高肿瘤内药物摄取,并克服不断扩增的 IL2R 阳性细胞群体对 CEA-IL2v 的消耗。本文提出的模型允许模拟个体化治疗计划,以优化免疫细胞因子的剂量和给药方案,用于癌症免疫治疗。