Computational Neurobiology Laboratory, The Salk Institute for Biological Sciences, La Jolla, CA 92037.
Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2410-E2418. doi: 10.1073/pnas.1716189115. Epub 2018 Feb 20.
An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.
采用一种结合信号检测理论和从连续切片电子显微镜(3DEM)进行精确 3D 重建的方法,研究了成年海马齿状回内中间穿通路径突触的突触可塑性和信息存储容量。长时程增强(LTP)的诱导显著增加了 30 分钟后测量的小和大棘突的频率。这种双向扩张导致单位长度颗粒细胞树突的总突触面积的异突触平衡。对照半球具有 6.5 种不同的棘突大小,存储容量为 2.7 位,而 LTP 导致 12.9 种不同的棘突大小(3.7 位)。相比之下,对照海马 CA1 突触具有 4.7 位的存储容量,其突触精度远高于对照或增强的齿状回突触。因此,突触可塑性改变了总容量,但海马亚区在其突触信息存储容量方面存在显著差异,反映了它们不同的功能和激活历史。
Proc Natl Acad Sci U S A. 2018-2-20
Philos Trans R Soc Lond B Biol Sci. 2024-7-29
Front Neuroanat. 2024-4-5
Cell. 2015-7-30
Prog Neurobiol. 2015-3