Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
Cell. 2015 Jul 30;162(3):648-61. doi: 10.1016/j.cell.2015.06.054.
We describe automated technologies to probe the structure of neural tissue at nanometer resolution and use them to generate a saturated reconstruction of a sub-volume of mouse neocortex in which all cellular objects (axons, dendrites, and glia) and many sub-cellular components (synapses, synaptic vesicles, spines, spine apparati, postsynaptic densities, and mitochondria) are rendered and itemized in a database. We explore these data to study physical properties of brain tissue. For example, by tracing the trajectories of all excitatory axons and noting their juxtapositions, both synaptic and non-synaptic, with every dendritic spine we refute the idea that physical proximity is sufficient to predict synaptic connectivity (the so-called Peters' rule). This online minable database provides general access to the intrinsic complexity of the neocortex and enables further data-driven inquiries.
我们描述了自动化技术,以纳米分辨率探测神经组织的结构,并利用这些技术生成了一个小鼠新皮层亚体积的饱和重建,其中所有细胞对象(轴突、树突和神经胶质)和许多亚细胞成分(突触、突触小泡、棘突、棘突装置、突触后密度和线粒体)都被呈现并在数据库中逐项列出。我们探索这些数据来研究脑组织的物理性质。例如,通过追踪所有兴奋性轴突的轨迹,并注意它们与每个树突棘突的突触和非突触毗邻,我们反驳了物理接近足以预测突触连接的观点(所谓的彼得斯法则)。这个可在线挖掘的数据库提供了对新皮层内在复杂性的普遍访问,并支持进一步的数据驱动研究。