Laboratoire des Maladies Neurodégénératives, UMR9199, CEA, CNRS, Université Paris-Sud, Univ Paris Saclay, MIRCen, I²BM, CEA, Fontenay-aux-Roses, 92265, France.
Neurosurgery Department, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Henri-Mondor Albert-Chenevier, PePsy department, F-94010, Créteil, France.
Sci Rep. 2018 Feb 20;8(1):3362. doi: 10.1038/s41598-018-21486-8.
Dissecting neural circuitry in non-human primates (NHP) is crucial to identify potential neuromodulation anatomical targets for the treatment of pharmacoresistant neuropsychiatric diseases by electrical neuromodulation. How targets of deep brain stimulation (DBS) and cortical targets of transcranial magnetic stimulation (TMS) compare and might complement one another is an important question. Combining optogenetics and tractography may enable anatomo-functional characterization of large brain cortico-subcortical neural pathways. For the proof-of-concept this approach was used in the NHP brain to characterize the motor cortico-subthalamic pathway (m_CSP) which might be involved in DBS action mechanism in Parkinson's disease (PD). Rabies-G-pseudotyped and Rabies-G-VSVg-pseudotyped EIAV lentiviral vectors encoding the opsin ChR2 gene were stereotaxically injected into the subthalamic nucleus (STN) and were retrogradely transported to the layer of the motor cortex projecting to STN. A precise anatomical mapping of this pathway was then performed using histology-guided high angular resolution MRI tractography guiding accurately cortical photostimulation of m_CSP origins. Photoexcitation of m_CSP axon terminals or m_CSP cortical origins modified the spikes distribution for photosensitive STN neurons firing rate in non-equivalent ways. Optogenetic tractography might help design preclinical neuromodulation studies in NHP models of neuropsychiatric disease choosing the most appropriate target for the tested hypothesis.
在非人类灵长类动物(NHP)中解析神经回路对于通过电神经调节来确定治疗药物抵抗性神经精神疾病的潜在神经调制解剖靶标至关重要。深部脑刺激(DBS)的靶标和经颅磁刺激(TMS)的皮质靶标如何相互比较并相互补充是一个重要的问题。结合光遗传学和示踪技术可以实现大脑皮质下神经通路的解剖功能特征。为了验证这一方法,该方法在 NHP 大脑中用于对运动皮质-苍白球通路(m_CSP)进行特征描述,该通路可能参与帕金森病(PD)中的 DBS 作用机制。狂犬病 G-假型和狂犬病 G-VSVg-假型 EIAV 慢病毒载体编码 opsin ChR2 基因,通过立体定向注射到苍白球(STN)中,并逆行运输到投射到 STN 的运动皮层层。然后使用组织学引导的高角度分辨率 MRI 示踪技术对该通路进行精确的解剖映射,该技术可准确引导 m_CSP 起源的皮质光刺激。m_CSP 轴突末端或 m_CSP 皮质起源的光激发以不同的方式改变了对光敏感的 STN 神经元放电率的尖峰分布。光遗传学示踪术可能有助于在神经精神疾病的 NHP 模型中设计临床前神经调节研究,选择最适合测试假设的目标。