National Institute for Mathematical and Biological Synthesis, Knoxville, Tennessee, 37996.
Oak Ridge National Laboratory, UT-ORNL Center for Molecular Biophysics, Oak Ridge, Tennessee, 37830.
J Comput Chem. 2018 Jul 30;39(20):1568-1578. doi: 10.1002/jcc.25192. Epub 2018 Feb 21.
A computational method which extracts the dominant motions from an ensemble of biomolecular conformations via a correlation analysis of residue-residue contacts is presented. The algorithm first renders the structural information into contact matrices, then constructs the collective modes based on the correlated dynamics of a selected set of dynamic contacts. Associated programs can bridge the results for further visualization using graphics software. The aim of this method is to provide an analysis of conformations of biopolymers from the contact viewpoint. It may assist a systematical uncovering of conformational switching mechanisms existing in proteins and biopolymer systems in general by statistical analysis of simulation snapshots. In contrast to conventional correlation analyses of Cartesian coordinates (such as distance covariance analysis and Cartesian principal component analysis), this program also provides an alternative way to locate essential collective motions in general. Herein, we detail the algorithm in a stepwise manner and comment on the importance of the method as applied to decoding allosteric mechanisms. © 2018 Wiley Periodicals, Inc.
提出了一种通过残基残基接触相关性分析从生物分子构象集合中提取主导运动的计算方法。该算法首先将结构信息转换为接触矩阵,然后基于所选动态接触的相关动力学构建集体模式。相关程序可以使用图形软件对结果进行桥接以进行进一步可视化。该方法的目的是从接触的角度分析生物聚合物的构象。通过对模拟快照的统计分析,它可以通过对构象转变机制的系统分析,协助发现蛋白质和生物聚合物系统中存在的构象转变机制。与传统的笛卡尔坐标相关性分析(如距离协方差分析和笛卡尔主成分分析)相比,该程序还为一般情况下定位基本集体运动提供了另一种方法。在此,我们逐步详细介绍了该算法,并评论了该方法在解码变构机制中的重要性。© 2018 Wiley Periodicals, Inc.