Institute for Advanced Interdisciplinary Research , Nanjing University of Aeronautics and Astronautics , Nanjing 211106 , P.R. China.
Ordered Matter Science Research Center, and Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics , Southeast University , Nanjing 211189 , P.R. China.
J Am Chem Soc. 2018 Mar 21;140(11):3975-3980. doi: 10.1021/jacs.7b12524. Epub 2018 Mar 9.
Molecular piezoelectrics are attracting tremendous interest because of their easy processing, light weight, low acoustical impedance, and mechanical flexibility. However, reports of molecular piezoelectrics with a piezoelectric coefficient d comparable to piezoceramics such as barium titanate (BTO, 90-190 pC/N) have been scarce. Here, we present a uniaxial molecular ferroelectric, trimethylchloromethylammonium tribromocadmium(II) (TMCM-CdBr), in which the halogen bonding might be a possible critical point for the stabilization of one-dimensional (1D) {CdBr} chain and further reservation of its ferroelectricity in such organic-inorganic hybrid crystalline systems. It has a large d of 139 pC/N, 1 order of magnitude higher than those of most classically uniaxial ferroelectrics such as LiNbO (6-16 pC/N) and Rochelle salt (∼7 pC/N), and comparable with those of multiaxial ferroelectrics such as BTO and trimethylbromomethylammonium tribromomanganese(II) (112 pC/N). Moreover, the simple single-crystal growth and easy-to-find polar axis enable it to hold a great potential for applying in the single-crystal form. In light of the strong, specific, and directional halogen-bonding interactions, this work provides possibilities to explore new classes of molecular piezoelectrics and contribute to further developments.
分子压电体因其易于加工、重量轻、低声阻抗和机械柔韧性而引起了极大的兴趣。然而,具有与钛酸钡(BTO,90-190 pC/N)等压电器件相当的压电系数 d 的分子压电体的报道却很少。在这里,我们提出了一种单轴分子铁电体,三甲基氯甲基铵三溴化镉(TMCM-CdBr),其中卤素键合可能是一维(1D){CdBr}链稳定的一个关键点,并进一步保留了其在这种有机-无机杂化晶体系统中的铁电性。它具有大的 d 值为 139 pC/N,比大多数经典单轴铁电体(如 LiNbO(6-16 pC/N)和罗谢尔盐(约 7 pC/N))高一个数量级,与多轴铁电体(如 BTO 和三甲基溴甲基铵三溴化锰(112 pC/N))相当。此外,简单的单晶生长和易于找到的极轴使其在单晶形式下具有很大的应用潜力。鉴于强、特异和定向的卤键相互作用,这项工作为探索新类别的分子压电体提供了可能性,并为进一步的发展做出了贡献。