McKenzie Simon C, Epifanovsky Evgeny, Barca Giuseppe M J, Gilbert Andrew T B, Gill Peter M W
Research School of Chemistry , Australian National University , Canberra , Australian Capital Territory 2601 , Australia.
Q-Chem Inc. , 6601 Owens Drive , Pleasanton , California 94588 , United States.
J Phys Chem A. 2018 Mar 22;122(11):3066-3075. doi: 10.1021/acs.jpca.7b12679. Epub 2018 Mar 8.
Effective core potential (ECP) integrals are among the most difficult one-electron integrals to calculate due to the projection operators. The radial part of these operators may include r, r, and r terms. For the r terms, we exploit a simple analytic expression for the fundamental projected integral to derive new recurrence relations and upper bounds for ECP integrals. For the r and r terms, we present a reconstruction method that replaces these terms by a sum of r terms and show that the resulting errors are chemically insignificant for a range of molecular properties. The new algorithm is available in Q-Chem 5.0 and is significantly faster than the ECP implementations in Q-Chem 4.4, GAMESS (US) and Dalton 2016.
由于投影算符的存在,有效核势(ECP)积分是最难计算的单电子积分之一。这些算符的径向部分可能包含r、r和r项。对于r项,我们利用基本投影积分的一个简单解析表达式来推导ECP积分的新递推关系和上限。对于r和r项,我们提出一种重构方法,用r项的和来代替这些项,并表明对于一系列分子性质,由此产生的误差在化学上是微不足道的。新算法可在Q-Chem 5.0中使用,并且比Q-Chem 4.4、GAMESS(美国)和Dalton 2016中的ECP实现要快得多。