Suppr超能文献

能量密度的分析与可视化。I. 来自实时含时密度泛函理论模拟的见解。

Analysis and visualization of energy densities. I. Insights from real-time time-dependent density functional theory simulations.

作者信息

Yang Junjie, Pei Zheng, Deng Jingheng, Mao Yuezhi, Wu Qin, Yang Zhibo, Wang Bin, Aikens Christine M, Liang Wanzhen, Shao Yihan

机构信息

Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, USA.

出版信息

Phys Chem Chem Phys. 2020 Dec 7;22(46):26838-26851. doi: 10.1039/d0cp04206d.

Abstract

In this article, we report a scheme to analyze and visualize the energy density fluctuations during the real-time time-dependent density functional theory (RT-TDDFT) simulations. Using Ag4-N2 complexes as examples, it is shown that the grid-based Kohn-Sham energy density can be computed at each time step using a procedure from Nakai and coworkers. Then the instantaneous energy of each molecular fragment (such as Ag4 and N2) can be obtained by partitioning the Kohn-Sham energy densities using Becke or fragment-based Hirshfeld (FBH) scheme. A strong orientation-dependence is observed for the energy flow between the Ag4 cluster and a nearby N2 molecule in the RT-TDDFT simulations. Future applications of such an energy density analysis in electron dynamics simulations are discussed.

摘要

在本文中,我们报告了一种在实时含时密度泛函理论(RT-TDDFT)模拟过程中分析和可视化能量密度波动的方案。以Ag4-N2络合物为例,结果表明,基于网格的Kohn-Sham能量密度可在每个时间步使用中井及其同事提出的方法进行计算。然后,通过使用Becke方法或基于片段的Hirshfeld(FBH)方案对Kohn-Sham能量密度进行划分,可以得到每个分子片段(如Ag4和N2)的瞬时能量。在RT-TDDFT模拟中,观察到Ag4簇与附近N2分子之间的能量流动具有很强的取向依赖性。本文还讨论了这种能量密度分析在电子动力学模拟中的未来应用。

相似文献

3
PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python.
J Chem Theory Comput. 2020 Apr 14;16(4):2410-2429. doi: 10.1021/acs.jctc.0c00053. Epub 2020 Mar 9.
4
Simulating Electron Dynamics in Polarizable Environments.
J Chem Theory Comput. 2017 Sep 12;13(9):3985-4002. doi: 10.1021/acs.jctc.7b00251. Epub 2017 Aug 17.
5
Dynamical transition orbitals: A particle-hole description in real-time TDDFT dynamics.
J Chem Phys. 2021 Feb 7;154(5):054107. doi: 10.1063/5.0035435.
6
Subsystem real-time time dependent density functional theory.
J Chem Phys. 2015 Apr 21;142(15):154116. doi: 10.1063/1.4918276.
7
Real-time time-dependent density functional theory using density fitting and the continuous fast multipole method.
J Comput Chem. 2020 Nov 15;41(30):2573-2582. doi: 10.1002/jcc.26412. Epub 2020 Sep 10.
8
Kohn-Sham Decomposition in Real-Time Time-Dependent Density-Functional Theory: An Efficient Tool for Analyzing Plasmonic Excitations.
J Chem Theory Comput. 2017 Oct 10;13(10):4779-4790. doi: 10.1021/acs.jctc.7b00589. Epub 2017 Sep 21.
9
On correlated electron-nuclear dynamics using time-dependent density functional theory.
J Chem Phys. 2006 Jul 7;125(1):014110. doi: 10.1063/1.2210471.
10
Time-dependent density functional theory beyond Kohn-Sham Slater determinants.
Phys Chem Chem Phys. 2016 Aug 3;18(31):20976-85. doi: 10.1039/c6cp00722h.

本文引用的文献

3
Real-Time Propagation TDDFT and Density Analysis for Exciton Coupling Calculations in Large Systems.
J Chem Theory Comput. 2019 Jun 11;15(6):3743-3754. doi: 10.1021/acs.jctc.9b00209. Epub 2019 May 28.
4
Molecular Simulations with in-deMon2k QM/MM, a Tutorial-Review.
Molecules. 2019 Apr 26;24(9):1653. doi: 10.3390/molecules24091653.
6
Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts.
Nano Lett. 2018 Nov 14;18(11):7289-7297. doi: 10.1021/acs.nanolett.8b03499. Epub 2018 Oct 26.
7
Quantifying hot carrier and thermal contributions in plasmonic photocatalysis.
Science. 2018 Oct 5;362(6410):69-72. doi: 10.1126/science.aat6967.
8
Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics.
Chem Rev. 2018 Aug 8;118(15):7026-7068. doi: 10.1021/acs.chemrev.7b00577. Epub 2018 May 16.
9
Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.
J Chem Theory Comput. 2018 Jun 12;14(6):3040-3052. doi: 10.1021/acs.jctc.8b00197. Epub 2018 May 9.
10
Efficient Method for Calculating Effective Core Potential Integrals.
J Phys Chem A. 2018 Mar 22;122(11):3066-3075. doi: 10.1021/acs.jpca.7b12679. Epub 2018 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验