Suppr超能文献

通过掺杂工程解析氧化铕中金属-绝缘体转变的精细结构。

Fine structure of metal-insulator transition in EuO resolved by doping engineering.

作者信息

Averyanov Dmitry V, Parfenov Oleg E, Tokmachev Andrey M, Karateev Igor A, Kondratev Oleg A, Taldenkov Alexander N, Platunov Mikhail S, Wilhelm Fabrice, Rogalev Andrei, Storchak Vyacheslav G

机构信息

National Research Center 'Kurchatov Institute', Kurchatov Sq. 1, Moscow 123182, Russia.

出版信息

Nanotechnology. 2018 May 11;29(19):195706. doi: 10.1088/1361-6528/aab16e. Epub 2018 Feb 22.

Abstract

Metal-insulator transitions (MITs) offer new functionalities for nanoelectronics. However, ongoing attempts to control the resistivity by external stimuli are hindered by strong coupling of spin, charge, orbital and lattice degrees of freedom. This difficulty presents a quest for materials which exhibit MIT caused by a single degree of freedom. In the archetypal ferromagnetic semiconductor EuO, magnetic orders dominate the MIT. Here we report a new approach to take doping under control in this material on the nanoscale: formation of oxygen vacancies is strongly suppressed to exhibit the highest MIT resistivity jump and magnetoresistance among thin films. The nature of the MIT is revealed in Gd doped films. The critical doping is determined to be more than an order of magnitude lower than in all previous studies. In lightly doped films, a remarkable thermal hysteresis in resistivity is discovered. It extends over 100 K in the paramagnetic phase reaching 3 orders of magnitude. In the warming mode, the MIT is shown to be a two-step process. The resistivity patterns are consistent with an active role of magnetic polarons-formation of a narrow band and its thermal destruction. High-temperature magnetic polaron effects include large negative magnetoresistance and ferromagnetic droplets revealed by x-ray magnetic circular dichroism. Our findings have wide-range implications for the understanding of strongly correlated oxides and establish fundamental benchmarks to guide theoretical models of the MIT.

摘要

金属-绝缘体转变(MITs)为纳米电子学提供了新的功能。然而,目前通过外部刺激来控制电阻率的尝试受到自旋、电荷、轨道和晶格自由度强耦合的阻碍。这一困难促使人们寻找由单一自由度引起MIT的材料。在典型的铁磁半导体EuO中,磁有序主导着MIT。在此,我们报告一种在纳米尺度上控制该材料中掺杂的新方法:强烈抑制氧空位的形成,以展现出薄膜中最高的MIT电阻率跃变和磁电阻。在钆掺杂薄膜中揭示了MIT的本质。确定临界掺杂比之前所有研究中的低一个数量级以上。在轻掺杂薄膜中,发现电阻率存在显著的热滞现象。在顺磁相中,热滞现象延伸超过100K,达到3个数量级。在升温模式下,MIT显示为一个两步过程。电阻率模式与磁极化子的积极作用一致——形成一个窄带及其热破坏。高温磁极化子效应包括大的负磁电阻和由x射线磁圆二色性揭示的铁磁液滴。我们的发现对理解强关联氧化物具有广泛的意义,并为指导MIT的理论模型建立了基本基准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验