Center for Correlated Electron Systems, Institute for Basic Science, Seoul, 08826, Republic of Korea.
Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.
Adv Mater. 2018 Oct;30(42):e1704777. doi: 10.1002/adma.201704777. Epub 2018 May 15.
The metal-insulator transition (MIT) in correlated materials is a novel phenomenon that accompanies a large change in resistivity, often many orders of magnitude. It is important in its own right but its switching behavior in resistivity can be useful for device applications. From the material physics point of view, the starting point of the research on the MIT should be to understand the microscopic mechanism. Here, an overview of recent efforts to unravel the microscopic mechanisms for various types of MITs in correlated materials is provided. Research has focused on transition metal oxides (TMOs), but transition metal chalcogenides have also been studied. Along the way, a new class of MIT materials is discovered, the so-called relativistic Mott insulators in 5d TMOs. Distortions in the MO (M = transition metal) octahedron are found to have a large and peculiar effect on the band structure in an orbital dependent way, possibly paving a way to the orbital selective Mott transition. In the final section, the character of the materials suitable for applications is summarized, followed by a brief discussion of some of the efforts to control MITs in correlated materials, including a dynamical approach using light.
关联材料中的金属-绝缘体转变 (MIT) 是一种伴随电阻率发生巨大变化(通常是数量级的变化)的新型现象。它本身很重要,但电阻率的开关行为在器件应用中可能很有用。从材料物理的角度来看,研究 MIT 的起点应该是理解微观机制。在这里,提供了对关联材料中各种类型 MIT 的微观机制的最新研究进展的概述。研究主要集中在过渡金属氧化物 (TMO) 上,但也研究了过渡金属硫属化合物。在此过程中,发现了一类新的 MIT 材料,即所谓的 5d TMO 中的相对论莫特绝缘体。发现 MO(M = 过渡金属)八面体的扭曲以轨道依赖的方式对能带结构产生了很大且特殊的影响,这可能为轨道选择性莫特转变铺平了道路。在最后一节中,总结了适合应用的材料特性,然后简要讨论了一些控制关联材料中 MIT 的努力,包括使用光的动力学方法。