IEEE Trans Image Process. 2018 May;27(5):2314-2325. doi: 10.1109/TIP.2017.2779264.
This paper addresses the multi-attributed graph matching problem, which considers multiple attributes jointly while preserving the characteristics of each attribute for graph matching. Since most of conventional graph matching algorithms integrate multiple attributes to construct a single unified attribute in an oversimplified manner, the information from multiple attributes is often not completely utilized. In order to solve this problem, we propose a novel multi-layer graph structure that can preserve the characteristics of each attribute in separated layers, and also propose a multi-attributed graph matching algorithm based on random walk centrality with the proposed multi-layer graph structure. We compare the proposed algorithm with other state-of-the-art graph matching algorithms based on a single-layer structure using synthetic and real data sets and demonstrate the superior performance of the proposed multi-layer graph structure and the multi-attributed graph matching algorithm.
本文针对多属性图匹配问题进行了研究,该问题在进行图匹配时考虑了多个属性,并保留了每个属性的特征。由于大多数传统的图匹配算法都是以过于简化的方式将多个属性集成到单个统一属性中,因此往往无法完全利用多个属性的信息。为了解决这个问题,我们提出了一种新颖的多层图结构,该结构可以在单独的层中保留每个属性的特征,并且还提出了一种基于随机游走中心度的多属性图匹配算法,该算法基于所提出的多层图结构。我们使用合成数据集和真实数据集将所提出的算法与其他基于单层结构的最先进的图匹配算法进行了比较,并证明了所提出的多层图结构和多属性图匹配算法的优越性能。