Suppr超能文献

基于结构和属性相似度的多目标进化算法在属性网络中的社区发现

A Multiobjective Evolutionary Algorithm Based on Structural and Attribute Similarities for Community Detection in Attributed Networks.

出版信息

IEEE Trans Cybern. 2018 Jul;48(7):1963-1976. doi: 10.1109/TCYB.2017.2720180. Epub 2017 Aug 16.

Abstract

Most of the existing community detection algorithms are based on vertex connectivity. While in many real networks, each vertex usually has one or more attributes describing its properties which are often homogeneous in a cluster. Such networks can be modeled as attributed graphs, whose attributes sometimes are equally important to topological structure in graph clustering. One important challenge is to detect communities considering both topological structure and vertex properties simultaneously. To this propose, a multiobjective evolutionary algorithm based on structural and attribute similarities (MOEA-SA) is first proposed to solve the attributed graph clustering problems in this paper. In MOEA-SA, a new objective named as attribute similarity is proposed and another objective employed is the modularity . A hybrid representation is used and a neighborhood correction strategy is designed to repair the wrongly assigned genes through making balance between structural and attribute information. Moreover, an effective multi-individual-based mutation operator is designed to guide the evolution toward the good direction. The performance of MOEA-SA is validated on several real Facebook attributed graphs and several ego-networks with multiattribute. Two measurements, namely density and entropy , are used to evaluate the quality of communities obtained. Experimental results demonstrate the effectiveness of MOEA-SA and the systematic comparisons with existing methods show that MOEA-SA can get better values of and in each graph and find more relevant communities with practical meanings. Knee points corresponding to the best compromise solutions are calculated to guide decision makers to make convenient choices.

摘要

大多数现有的社区检测算法都是基于顶点连接性的。然而,在许多真实网络中,每个顶点通常具有一个或多个描述其属性的属性,这些属性在一个簇中通常是同质的。这样的网络可以被建模为带属性的图,其属性有时与图聚类中的拓扑结构同样重要。一个重要的挑战是同时考虑拓扑结构和顶点属性来检测社区。为此,本文首次提出了一种基于结构和属性相似度的多目标进化算法(MOEA-SA)来解决带属性图聚类问题。在 MOEA-SA 中,提出了一个新的目标,称为属性相似度,另一个目标是模块度。采用混合表示,并设计了一种邻域校正策略,通过在结构和属性信息之间取得平衡来修复错误分配的基因。此外,设计了一种有效的基于多个体的变异算子,以引导进化朝着良好的方向发展。在几个真实的 Facebook 带属性图和多个带有多属性的自网络上验证了 MOEA-SA 的性能。使用了两个度量标准,即密度和熵,来评估获得的社区的质量。实验结果证明了 MOEA-SA 的有效性,并且与现有方法的系统比较表明,MOEA-SA 可以在每个图中获得更好的和值,并找到更具实际意义的相关社区。计算了对应最佳折衷解的拐点,以指导决策者做出方便的选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验