Katunar Maria R, Gomez Sanchez Andrea, Ballarre Josefina, Baca Matias, Vottola Carlos, Orellano Juan C, Schell Hanna, Duffo Gustavo, Cere Silvia
Corrosion Division, INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo 4302, B7608FDQ, Mar del Plata, Argentina.
Traumatologia y Ortopedia, Hospital Interzonal General de Agudos "Oscar Alende", Mar del Plata, Argentina.
Prog Biomater. 2014 Jun 11;3(1):24. doi: 10.1007/s40204-014-0024-9.
The mechanical properties and good biocompatibility of zirconium and some of its alloys make these materials good candidates for biomedical applications. The attractive in vivo performance of zirconium is mainly due to the presence of a protective oxide layer. In this preliminary study, the surface of pure zirconium modified by anodisation in acidic media at low potentials to enhance its barrier protection given by the oxides and osseointegration. Bare, commercially pure zirconium cylinders were compared to samples anodised at 30 V through electrochemical tests and scanning electron microscopy (SEM). For both conditions, in vivo tests were performed in a rat tibial osteotomy model. The histological features and fluorochrome-labelling changes of newly bone formed around the implants were evaluated on the non-decalcified sections 63 days after surgery. Electrochemical tests and SEM images show that the anodisation treatment increases the barrier effect over the material and the in vivo tests show continuous newly formed bone around the implant with a different amount of osteocytes in their lacunae depending on the region. There was no significant change in bone thickness around either kind of implant but the anodised samples had a significantly higher mineral apposition, suggesting that the anodisation treatment stimulates and assists the osseointegration process. We conclude that anodisation treatment at 30 V can stimulate the implant fixation in a rat model, making zirconium a strong candidate material for permanent implants.
锆及其某些合金的机械性能和良好的生物相容性使这些材料成为生物医学应用的理想候选材料。锆在体内具有吸引力的性能主要归因于其表面存在一层保护性氧化层。在这项初步研究中,通过在低电位的酸性介质中进行阳极氧化处理来改性纯锆表面,以增强其由氧化物提供的屏障保护作用和骨整合能力。将裸露的商业纯锆圆柱体与在30V下进行阳极氧化处理的样品进行电化学测试和扫描电子显微镜(SEM)比较。对于这两种情况,均在大鼠胫骨截骨模型中进行体内测试。在术后63天,对未脱钙切片上植入物周围新形成骨的组织学特征和荧光染料标记变化进行评估。电化学测试和SEM图像表明,阳极氧化处理增强了材料的屏障效应,体内测试显示植入物周围有持续新形成的骨,根据区域不同,其骨陷窝中的骨细胞数量也不同。两种植入物周围的骨厚度均无显著变化,但阳极氧化处理的样品具有明显更高的矿物质沉积,这表明阳极氧化处理刺激并促进了骨整合过程。我们得出结论,在大鼠模型中,30V的阳极氧化处理可以促进植入物的固定,使锆成为永久性植入物的有力候选材料。