State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada.
J Chem Phys. 2018 Feb 21;148(7):074113. doi: 10.1063/1.5019323.
Quantum mechanical calculations of ro-vibrational energies of CH, CHD, CHD, and CHF were made with two different numerical approaches. Both use polyspherical coordinates. The computed energy levels agree, confirming the accuracy of the methods. In the first approach, for all the molecules, the coordinates are defined using three Radau vectors for the CH subsystem and a Jacobi vector between the remaining atom and the centre of mass of CH. Euler angles specifying the orientation of a frame attached to CH with respect to a frame attached to the Jacobi vector are used as vibrational coordinates. A direct product potential-optimized discrete variable vibrational basis is used to build a Hamiltonian matrix. Ro-vibrational energies are computed using a re-started Arnoldi eigensolver. In the second approach, the coordinates are the spherical coordinates associated with four Radau vectors or three Radau vectors and a Jacobi vector, and the frame is an Eckart frame. Vibrational basis functions are products of contracted stretch and bend functions, and eigenvalues are computed with the Lanczos algorithm. For CH, CHD, and CHD, we report the first J > 0 energy levels computed on the Wang-Carrington potential energy surface [X.-G. Wang and T. Carrington, J. Chem. Phys. 141(15), 154106 (2014)]. For CHF, the potential energy surface of Zhao et al. [J. Chem. Phys. 144, 204302 (2016)] was used. All the results are in good agreement with experimental data.
采用两种不同的数值方法对 CH、CHD、CHD 和 CHF 的 rovibrational 能量进行了量子力学计算。两种方法都使用了多极坐标。计算出的能级一致,证实了方法的准确性。在第一种方法中,对于所有分子,使用三个 Radau 向量定义 CH 子系统的坐标,以及剩余原子和 CH 质心之间的 Jacobi 向量。指定与 Jacobi 向量相连的框架相对于与 CH 相连的框架的取向的欧拉角用作振动坐标。使用优化的离散变量振动基的直接乘积势来构建哈密顿矩阵。使用重新启动的 Arnoldi 本征求解器计算 rovibrational 能量。在第二种方法中,坐标是与四个 Radau 向量或三个 Radau 向量和一个 Jacobi 向量相关的球坐标,并且框架是 Eckart 框架。振动基函数是收缩拉伸和弯曲函数的乘积,并且使用 Lanczos 算法计算本征值。对于 CH、CHD 和 CHD,我们报告了在 Wang-Carrington 势能表面上计算的第一个 J > 0 能级[X.-G. Wang 和 T. Carrington,J. Chem. Phys. 141(15), 154106 (2014)]。对于 CHF,使用了 Zhao 等人的势能表面[J. Chem. Phys. 144, 204302 (2016)]。所有结果都与实验数据吻合良好。