Avila Gustavo, Mátyus Edit
Institute of Chemistry, ELTE, Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary.
J Chem Phys. 2019 May 7;150(17):174107. doi: 10.1063/1.5090846.
Methodological progress is reported in the challenging direction of a black-box-type variational solution of the (ro)vibrational Schrödinger equation applicable to floppy, polyatomic systems with multiple large-amplitude motions. This progress is achieved through the combination of (i) the numerical kinetic-energy operator (KEO) approach of Mátyus et al. [J. Chem. Phys. 130, 134112 (2009)] and (ii) the Smolyak nonproduct grid method of Avila and Carrington, Jr. [J. Chem. Phys. 131, 174103 (2009)]. The numerical representation of the KEO makes it possible to choose internal coordinates and a body-fixed frame best suited for the molecular system. The Smolyak scheme reduces the size of the direct-product grid representation by orders of magnitude, while retaining some of the useful features of it. As a result, multidimensional (ro)vibrational states are computed with system-adapted coordinates, a compact basis- and grid-representation, and an iterative eigensolver. Details of the methodological developments and the first numerical applications are presented for the CH·Ar complex treated in full (12D) vibrational dimensionality.
在将(转动)振动薛定谔方程的黑箱型变分解应用于具有多个大幅度运动的柔性多原子系统这一具有挑战性的方向上,报告了方法学上的进展。这一进展是通过以下两者的结合实现的:(i)马蒂乌斯等人[《化学物理杂志》130, 134112 (2009)]的数值动能算符(KEO)方法,以及(ii)阿维拉和小卡林顿的斯莫利亚克非乘积网格方法[《化学物理杂志》131, 174103 (2009)]。KEO的数值表示使得能够选择最适合分子系统的内坐标和体固定框架。斯莫利亚克方案将直积网格表示的大小减小了几个数量级,同时保留了其一些有用的特性。结果,使用系统适配坐标、紧凑的基和网格表示以及迭代本征解算器来计算多维(转动)振动态。针对在完整(12维)振动维度下处理的CH·Ar复合物,给出了方法学发展的细节和首次数值应用。