Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom.
J Chem Phys. 2018 Feb 21;148(7):074107. doi: 10.1063/1.5001340.
Density Functional Theory (DFT) calculations with computational effort which increases linearly with the number of atoms (linear-scaling DFT) have been successfully developed for insulators, taking advantage of the exponential decay of the one-particle density matrix. For metallic systems, the density matrix is also expected to decay exponentially at finite electronic temperature and linear-scaling DFT methods should be possible by taking advantage of this decay. Here we present a method for DFT calculations at finite electronic temperature for metallic systems which is effectively linear-scaling (O(N)). Our method generates the elements of the one-particle density matrix and also finds the required chemical potential and electronic entropy using polynomial expansions. A fixed expansion length is always employed to generate the density matrix, without any loss in accuracy by the application of a high electronic temperature followed by successive steps of temperature reduction until the desired (low) temperature density matrix is obtained. We have implemented this method in the ONETEP linear-scaling (for insulators) DFT code which employs local orbitals that are optimised in situ. By making use of the sparse matrix machinery of ONETEP, our method exploits the sparsity of Hamiltonian and density matrices to perform calculations on metallic systems with computational cost that increases asymptotically linearly with the number of atoms. We demonstrate the linear-scaling computational cost of our method with calculation times on palladium nanoparticles with up to ∼13 000 atoms.
密度泛函理论(DFT)计算的计算工作量随原子数量呈线性增加(线性标度 DFT),已经成功应用于绝缘体,利用单粒子密度矩阵的指数衰减。对于金属系统,在有限的电子温度下,密度矩阵也有望呈指数衰减,并且可以利用这种衰减来实现线性标度 DFT 方法。在这里,我们提出了一种用于金属系统有限电子温度下 DFT 计算的方法,该方法具有有效的线性标度(O(N))。我们的方法生成单粒子密度矩阵的元素,并使用多项式展开找到所需的化学势和电子熵。为了生成密度矩阵,总是使用固定的扩展长度,而不会因应用高电子温度然后通过连续的温度降低步骤直到获得所需(低)温度密度矩阵而导致精度损失。我们已经在 ONETEP 线性标度(用于绝缘体)DFT 代码中实现了这种方法,该代码采用原位优化的局域轨道。通过利用 ONETEP 的稀疏矩阵机制,我们的方法利用哈密顿量和密度矩阵的稀疏性来对具有计算成本的金属系统进行计算,该计算成本随原子数量呈渐近线性增加。我们通过对多达约 13000 个原子的钯纳米颗粒的计算时间来证明我们方法的线性标度计算成本。