Suppr超能文献

人类基因组中尚未被探索的治疗机会。

Unexplored therapeutic opportunities in the human genome.

作者信息

Oprea Tudor I, Bologa Cristian G, Brunak Søren, Campbell Allen, Gan Gregory N, Gaulton Anna, Gomez Shawn M, Guha Rajarshi, Hersey Anne, Holmes Jayme, Jadhav Ajit, Jensen Lars Juhl, Johnson Gary L, Karlson Anneli, Leach Andrew R, Ma'ayan Avi, Malovannaya Anna, Mani Subramani, Mathias Stephen L, McManus Michael T, Meehan Terrence F, von Mering Christian, Muthas Daniel, Nguyen Dac-Trung, Overington John P, Papadatos George, Qin Jun, Reich Christian, Roth Bryan L, Schürer Stephan C, Simeonov Anton, Sklar Larry A, Southall Noel, Tomita Susumu, Tudose Ilinca, Ursu Oleg, Vidovic Dušica, Waller Anna, Westergaard David, Yang Jeremy J, Zahoránszky-Köhalmi Gergely

机构信息

Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA.

UNM Comprehensive Cancer Center, Albuquerque, NM, USA.

出版信息

Nat Rev Drug Discov. 2018 May;17(5):317-332. doi: 10.1038/nrd.2018.14. Epub 2018 Mar 23.

Abstract

A large proportion of biomedical research and the development of therapeutics is focused on a small fraction of the human genome. In a strategic effort to map the knowledge gaps around proteins encoded by the human genome and to promote the exploration of currently understudied, but potentially druggable, proteins, the US National Institutes of Health launched the Illuminating the Druggable Genome (IDG) initiative in 2014. In this article, we discuss how the systematic collection and processing of a wide array of genomic, proteomic, chemical and disease-related resource data by the IDG Knowledge Management Center have enabled the development of evidence-based criteria for tracking the target development level (TDL) of human proteins, which indicates a substantial knowledge deficit for approximately one out of three proteins in the human proteome. We then present spotlights on the TDL categories as well as key drug target classes, including G protein-coupled receptors, protein kinases and ion channels, which illustrate the nature of the unexplored opportunities for biomedical research and therapeutic development.

摘要

大部分生物医学研究和治疗方法的开发都集中在人类基因组的一小部分上。为了战略性地梳理围绕人类基因组编码蛋白质的知识空白,并推动对目前研究不足但具有潜在成药潜力的蛋白质进行探索,美国国立卫生研究院于2014年发起了“照亮可药物基因组”(IDG)计划。在本文中,我们讨论了IDG知识管理中心如何通过系统收集和处理大量基因组、蛋白质组、化学和疾病相关资源数据,制定了基于证据的标准来追踪人类蛋白质的靶点开发水平(TDL),这表明人类蛋白质组中约三分之一的蛋白质存在重大知识缺口。然后,我们重点介绍了TDL类别以及关键药物靶点类别,包括G蛋白偶联受体、蛋白激酶和离子通道,这些类别说明了生物医学研究和治疗开发中未被探索机会的性质。

相似文献

1
Unexplored therapeutic opportunities in the human genome.
Nat Rev Drug Discov. 2018 May;17(5):317-332. doi: 10.1038/nrd.2018.14. Epub 2018 Mar 23.
2
Getting Started with the IDG KMC Datasets and Tools.
Curr Protoc. 2022 Jan;2(1):e355. doi: 10.1002/cpz1.355.
3
Drug target ontology to classify and integrate drug discovery data.
J Biomed Semantics. 2017 Nov 9;8(1):50. doi: 10.1186/s13326-017-0161-x.
4
Overview of the Knowledge Management Center for Illuminating the Druggable Genome.
Drug Discov Today. 2024 Mar;29(3):103882. doi: 10.1016/j.drudis.2024.103882. Epub 2024 Jan 11.
5
Illuminating the druggable genome: Pathways to progress.
Drug Discov Today. 2024 Mar;29(3):103805. doi: 10.1016/j.drudis.2023.103805. Epub 2023 Oct 27.
6
How to Illuminate the Druggable Genome Using Pharos.
Curr Protoc Bioinformatics. 2020 Mar;69(1):e92. doi: 10.1002/cpbi.92.
7
Pharos 2023: an integrated resource for the understudied human proteome.
Nucleic Acids Res. 2023 Jan 6;51(D1):D1405-D1416. doi: 10.1093/nar/gkac1033.
8
Knowledge graph analytics platform with LINCS and IDG for Parkinson's disease target illumination.
BMC Bioinformatics. 2022 Jan 12;23(1):37. doi: 10.1186/s12859-021-04530-9.
9
Illuminating the understudied GPCR-ome.
Drug Discov Today. 2024 Mar;29(3):103848. doi: 10.1016/j.drudis.2023.103848. Epub 2023 Dec 3.
10
TCRD and Pharos 2021: mining the human proteome for disease biology.
Nucleic Acids Res. 2021 Jan 8;49(D1):D1334-D1346. doi: 10.1093/nar/gkaa993.

引用本文的文献

1
The Data Distillery: A Graph Framework for Semantic Integration and Querying of Biomedical Data.
bioRxiv. 2025 Aug 15:2025.08.11.666099. doi: 10.1101/2025.08.11.666099.
2
Ultrasmall chemogenetic tags with group-transfer ligands.
bioRxiv. 2025 May 10:2025.05.10.653252. doi: 10.1101/2025.05.10.653252.
3
AI meets physics in computational structure-based drug discovery for GPCRs.
NPJ Drug Discov. 2025;2(1):16. doi: 10.1038/s44386-025-00019-0. Epub 2025 Jul 3.
5
TICTAC: target illumination clinical trial analytics with cheminformatics.
Front Bioinform. 2025 Jun 9;5:1579865. doi: 10.3389/fbinf.2025.1579865. eCollection 2025.
6
Metabolic mapping of the human solute carrier superfamily.
Mol Syst Biol. 2025 May 12. doi: 10.1038/s44320-025-00106-4.
7
PRESCOTT: a population aware, epistatic, and structural model accurately predicts missense effects.
Genome Biol. 2025 May 6;26(1):113. doi: 10.1186/s13059-025-03581-y.
8
GeneSetCart: assembling, augmenting, combining, visualizing, and analyzing gene sets.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf025.
9
Recent Developments in the Optical Control of Adrenergic Signaling.
Med Res Rev. 2025 Sep;45(5):1307-1322. doi: 10.1002/med.22110. Epub 2025 Apr 3.
10
Generative AI lacks the human creativity to achieve scientific discovery from scratch.
Sci Rep. 2025 Mar 20;15(1):9587. doi: 10.1038/s41598-025-93794-9.

本文引用的文献

1
A manifesto for reproducible science.
Nat Hum Behav. 2017 Jan 10;1(1):0021. doi: 10.1038/s41562-016-0021.
2
The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand.
Nat Commun. 2017 Dec 5;8(1):1910. doi: 10.1038/s41467-017-02084-0.
3
DrugBank 5.0: a major update to the DrugBank database for 2018.
Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082. doi: 10.1093/nar/gkx1037.
4
Linking smell to metabolism and aging.
Science. 2017 Nov 10;358(6364):718-719. doi: 10.1126/science.aao5474.
5
Drug target ontology to classify and integrate drug discovery data.
J Biomed Semantics. 2017 Nov 9;8(1):50. doi: 10.1186/s13326-017-0161-x.
6
Trends in GPCR drug discovery: new agents, targets and indications.
Nat Rev Drug Discov. 2017 Dec;16(12):829-842. doi: 10.1038/nrd.2017.178. Epub 2017 Oct 27.
7
Drug discovery effectiveness from the standpoint of therapeutic mechanisms and indications.
Nat Rev Drug Discov. 2018 Jan;17(1):19-33. doi: 10.1038/nrd.2017.194. Epub 2017 Oct 27.
8
Discovery of new GPCR ligands to illuminate new biology.
Nat Chem Biol. 2017 Nov;13(11):1143-1151. doi: 10.1038/nchembio.2490. Epub 2017 Oct 18.
9
Genetic effects on gene expression across human tissues.
Nature. 2017 Oct 11;550(7675):204-213. doi: 10.1038/nature24277.
10
How Ligands Illuminate GPCR Molecular Pharmacology.
Cell. 2017 Jul 27;170(3):414-427. doi: 10.1016/j.cell.2017.07.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验