Center for Computational Natural Sciences and Bioinformatics , International Institute of Information Technology , Gachibowli 500032 , Hyderabad , Telangana , India.
J Chem Inf Model. 2018 Mar 26;58(3):647-660. doi: 10.1021/acs.jcim.7b00636. Epub 2018 Mar 2.
DNA damage alters genetic information and adversely affects gene expression pathways leading to various complex genetic disorders and cancers. DNA repair proteins recognize and rectify DNA damage and mismatches with high fidelity. A critical molecular event that occurs during most protein-mediated DNA repair processes is the extrusion of orphaned bases at the damaged site facilitated by specific repairing enzymes. The molecular-level understanding of the mechanism, dynamics, and energetics of base extrusion is necessary to elucidate the molecular basis of protein-mediated DNA damage repair. The present article investigates the molecular mechanism of dinucleotide extrusion in a mismatched DNA (containing a stretch of three contiguous thymidine-thymidine base pairs) facilitated by Radiation sensitive 4 (RAD4), a key DNA repair protein, on an atom-by-atom basis using molecular dynamics (MD) and umbrella-sampling (US) simulations. Using atomistic models of RAD4-free and RAD4-bound mismatched DNA, the free energy profiles associated with extrusion of mismatched partner bases are determined for both systems. The mismatched bases adopted the most stable intrahelical conformation, and their extrusion was unfavorable in RAD4-free mismatched DNA due to the presence of prohibitively high barriers (>12.0 kcal/mol) along the extrusion pathways. Upon binding of RAD4 to the DNA, the global free energy minimum is shifted to the extrahelical state indicating the key role of RAD4-DNA interactions in catalyzing the dinucleotide base extrusion in the DNA-RAD4 complex. The critical residues of RAD4 contributing to the conformational stability of the mismatched bases are identified, and the energetics of insertion of a β-hairpin of RAD4 into the DNA duplex is examined. The conformational energy landscape-based mechanistic insight into RAD4-mediated base extrusion provided here may serve as a useful baseline to understand the molecular basis of xeroderma pigmentosum C (XPC)-mediated DNA damage repair in humans.
DNA 损伤改变遗传信息,并且会对基因表达途径产生不利影响,导致各种复杂的遗传疾病和癌症。DNA 修复蛋白以高精度识别和纠正 DNA 损伤和错配。在大多数由蛋白质介导的 DNA 修复过程中,发生的一个关键分子事件是由特定修复酶在损伤部位将孤立碱基挤出。为了阐明蛋白质介导的 DNA 损伤修复的分子基础,了解碱基挤出的机制、动力学和能量学的分子水平是必要的。本文基于分子动力学(MD)和伞状采样(US)模拟,从原子水平上研究了关键 DNA 修复蛋白 RAD4 介导的错配 DNA(含有三个连续胸腺嘧啶-胸腺嘧啶碱基对)中二核苷酸挤出的分子机制。利用 RAD4 缺失和 RAD4 结合错配 DNA 的原子模型,确定了两个系统中外排错配碱基的自由能曲线。错配碱基采用最稳定的内环构象,由于挤出途径上存在极高的势垒(>12.0 kcal/mol),因此在 RAD4 缺失的错配 DNA 中外排是不利的。RAD4 与 DNA 结合后,全局自由能最小值转移到外环状态,表明 RAD4-DNA 相互作用在催化 DNA-RAD4 复合物中二核苷酸碱基挤出中起着关键作用。确定了 RAD4 中对错配碱基构象稳定性有贡献的关键残基,并研究了 RAD4 的 β-发夹插入 DNA 双螺旋的能量学。基于构象能量景观的 RAD4 介导的碱基挤出的机制见解可以作为理解人类 Xeroderma Pigmentosum C (XPC) 介导的 DNA 损伤修复的分子基础的有用基线。