Kong Muwen, Liu Lili, Chen Xuejing, Driscoll Katherine I, Mao Peng, Böhm Stefanie, Kad Neil M, Watkins Simon C, Bernstein Kara A, Wyrick John J, Min Jung-Hyun, Van Houten Bennett
Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
Mol Cell. 2016 Oct 20;64(2):376-387. doi: 10.1016/j.molcel.2016.09.005. Epub 2016 Oct 6.
Nucleotide excision repair (NER) is an evolutionarily conserved mechanism that processes helix-destabilizing and/or -distorting DNA lesions, such as UV-induced photoproducts. Here, we investigate the dynamic protein-DNA interactions during the damage recognition step using single-molecule fluorescence microscopy. Quantum dot-labeled Rad4-Rad23 (yeast XPC-RAD23B ortholog) forms non-motile complexes or conducts a one-dimensional search via either random diffusion or constrained motion. Atomic force microcopy analysis of Rad4 with the β-hairpin domain 3 (BHD3) deleted reveals that this motif is non-essential for damage-specific binding and DNA bending. Furthermore, we find that deletion of seven residues in the tip of β-hairpin in BHD3 increases Rad4-Rad23 constrained motion at the expense of stable binding at sites of DNA lesions, without diminishing cellular UV resistance or photoproduct repair in vivo. These results suggest a distinct intermediate in the damage recognition process during NER, allowing dynamic DNA damage detection at a distance.
核苷酸切除修复(NER)是一种进化上保守的机制,可处理破坏螺旋和/或扭曲DNA的损伤,例如紫外线诱导的光产物。在这里,我们使用单分子荧光显微镜研究损伤识别步骤中动态的蛋白质-DNA相互作用。量子点标记的Rad4-Rad23(酵母XPC-RAD23B直系同源物)形成非移动复合物,或通过随机扩散或受限运动进行一维搜索。对缺失β-发夹结构域3(BHD3)的Rad4进行原子力显微镜分析表明,该基序对于损伤特异性结合和DNA弯曲并非必需。此外,我们发现,删除BHD3中β-发夹末端的七个残基会增加Rad4-Rad23的受限运动,但以牺牲在DNA损伤位点的稳定结合为代价,且不会降低细胞在体内的紫外线抗性或光产物修复能力。这些结果表明在NER的损伤识别过程中存在一种独特的中间体,允许在一定距离处进行动态DNA损伤检测。