Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510005 Guangzhou, China; Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
Cell. 2018 Feb 22;172(5):1122-1131.e9. doi: 10.1016/j.cell.2018.02.010.
The implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches. Applying this approach to a dataset of optical coherence tomography images, we demonstrate performance comparable to that of human experts in classifying age-related macular degeneration and diabetic macular edema. We also provide a more transparent and interpretable diagnosis by highlighting the regions recognized by the neural network. We further demonstrate the general applicability of our AI system for diagnosis of pediatric pneumonia using chest X-ray images. This tool may ultimately aid in expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, resulting in improved clinical outcomes. VIDEO ABSTRACT.
临床决策支持算法在医学成像中的应用面临着可靠性和可解释性的挑战。在这里,我们建立了一个基于深度学习框架的诊断工具,用于筛查常见可治疗致盲性视网膜疾病的患者。我们的框架利用迁移学习,用传统方法数据的一小部分来训练神经网络。将这种方法应用于光学相干断层扫描图像数据集,我们证明了在分类与年龄相关的黄斑变性和糖尿病性黄斑水肿方面,其性能可与人类专家相媲美。我们还通过突出神经网络识别的区域,提供了更透明和可解释的诊断。我们还进一步展示了我们的人工智能系统在使用胸部 X 射线图像诊断儿科肺炎方面的通用性。该工具最终可能有助于加快这些可治疗疾病的诊断和转诊,从而实现更早的治疗,改善临床结果。视频摘要。
Graefes Arch Clin Exp Ophthalmol. 2019-3
Comput Methods Programs Biomed. 2019-6-14
Graefes Arch Clin Exp Ophthalmol. 2018-1
Comput Methods Programs Biomed. 2020-4
Theranostics. 2019-1-1
Graefes Arch Clin Exp Ophthalmol. 2018-2
Proc IEEE Int Symp Comput Based Med Syst. 2025-6