文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于图像的深度学习识别医学诊断和可治疗疾病。

Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning.

机构信息

Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510005 Guangzhou, China; Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

Shiley Eye Institute, Institute for Engineering in Medicine, Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.

出版信息

Cell. 2018 Feb 22;172(5):1122-1131.e9. doi: 10.1016/j.cell.2018.02.010.


DOI:10.1016/j.cell.2018.02.010
PMID:29474911
Abstract

The implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches. Applying this approach to a dataset of optical coherence tomography images, we demonstrate performance comparable to that of human experts in classifying age-related macular degeneration and diabetic macular edema. We also provide a more transparent and interpretable diagnosis by highlighting the regions recognized by the neural network. We further demonstrate the general applicability of our AI system for diagnosis of pediatric pneumonia using chest X-ray images. This tool may ultimately aid in expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, resulting in improved clinical outcomes. VIDEO ABSTRACT.

摘要

临床决策支持算法在医学成像中的应用面临着可靠性和可解释性的挑战。在这里,我们建立了一个基于深度学习框架的诊断工具,用于筛查常见可治疗致盲性视网膜疾病的患者。我们的框架利用迁移学习,用传统方法数据的一小部分来训练神经网络。将这种方法应用于光学相干断层扫描图像数据集,我们证明了在分类与年龄相关的黄斑变性和糖尿病性黄斑水肿方面,其性能可与人类专家相媲美。我们还通过突出神经网络识别的区域,提供了更透明和可解释的诊断。我们还进一步展示了我们的人工智能系统在使用胸部 X 射线图像诊断儿科肺炎方面的通用性。该工具最终可能有助于加快这些可治疗疾病的诊断和转诊,从而实现更早的治疗,改善临床结果。视频摘要。

相似文献

[1]
Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning.

Cell. 2018-2-22

[2]
Fully automated detection of retinal disorders by image-based deep learning.

Graefes Arch Clin Exp Ophthalmol. 2019-3

[3]
Classification of diabetes-related retinal diseases using a deep learning approach in optical coherence tomography.

Comput Methods Programs Biomed. 2019-6-14

[4]
OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.

Graefes Arch Clin Exp Ophthalmol. 2018-1

[5]
A transfer learning method with deep residual network for pediatric pneumonia diagnosis.

Comput Methods Programs Biomed. 2020-4

[6]
The possibility of the combination of OCT and fundus images for improving the diagnostic accuracy of deep learning for age-related macular degeneration: a preliminary experiment.

Med Biol Eng Comput. 2018-10-22

[7]
Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study.

Lancet Digit Health. 2021-5

[8]
Artificial intelligence-based decision-making for age-related macular degeneration.

Theranostics. 2019-1-1

[9]
Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning.

Graefes Arch Clin Exp Ophthalmol. 2018-2

[10]
Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs.

JAMA. 2016-12-13

引用本文的文献

[1]
An innovative bimodal computed tomography data-driven deep learning model for predicting aortic dissection: a multi-center study.

Quant Imaging Med Surg. 2025-9-1

[2]
An artificial intelligence cloud platform for OCT-based retinal anomalies screening system in real clinical environments.

NPJ Digit Med. 2025-8-29

[3]
DCNN models with post-hoc interpretability for the automated detection of glossitis and OSCC on the tongue.

Sci Rep. 2025-8-29

[4]
Octascope: A Lightweight Pre-Trained Model for Optical Coherence Tomography.

IEEE Access. 2025

[5]
The Hidden Threat of Hallucinations in Binary Chest X-ray Pneumonia Classification.

Proc IEEE Int Symp Comput Based Med Syst. 2025-6

[6]
Assessing Large Multimodal Models for One-Shot Learning and Interpretability in Biomedical Image Classification.

Adv Intell Syst. 2025-4-6

[7]
Compact Vision-Language Models Enable Efficient and Interpretable Automated OCT Analysis Through Layer Specific Multimodal Learning.

bioRxiv. 2025-8-11

[8]
ISOSNet: a unified framework for cone photoreceptor detection and inner segment and outer segment length measurement from AO-OCT B-scans.

Biomed Opt Express. 2025-7-17

[9]
Improving the estimation of the spherical equivalent subjective refraction using objective information on accommodation.

Biomed Opt Express. 2025-7-16

[10]
Automatic segmentation of clear cell renal cell carcinoma based on deep learning and a preliminary exploration of the tumor microenvironment.

Transl Androl Urol. 2025-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索