文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于视网膜照片的深度学习算法在近视中的应用和一个促进人工智能医学研究的区块链平台:一项回顾性多队列研究。

Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study.

机构信息

Singapore Eye Research Institute, Singapore, Singapore National Eye Centre, Singapore; Duke-National University of Singapore Medical School, Singapore.

Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore.

出版信息

Lancet Digit Health. 2021 May;3(5):e317-e329. doi: 10.1016/S2589-7500(21)00055-8.


DOI:10.1016/S2589-7500(21)00055-8
PMID:33890579
Abstract

BACKGROUND: By 2050, almost 5 billion people globally are projected to have myopia, of whom 20% are likely to have high myopia with clinically significant risk of sight-threatening complications such as myopic macular degeneration. These are diagnoses that typically require specialist assessment or measurement with multiple unconnected pieces of equipment. Artificial intelligence (AI) approaches might be effective for risk stratification and to identify individuals at highest risk of visual loss. However, unresolved challenges for AI medical studies remain, including paucity of transparency, auditability, and traceability. METHODS: In this retrospective multicohort study, we developed and tested retinal photograph-based deep learning algorithms for detection of myopic macular degeneration and high myopia, using a total of 226 686 retinal images. First we trained and internally validated the algorithms on datasets from Singapore, and then externally tested them on datasets from China, Taiwan, India, Russia, and the UK. We also compared the performance of the deep learning algorithms against six human experts in the grading of a randomly selected dataset of 400 images from the external datasets. As proof of concept, we used a blockchain-based AI platform to demonstrate the real-world application of secure data transfer, model transfer, and model testing across three sites in Singapore and China. FINDINGS: The deep learning algorithms showed robust diagnostic performance with areas under the receiver operating characteristic curves [AUC] of 0·969 (95% CI 0·959-0·977) or higher for myopic macular degeneration and 0·913 (0·906-0·920) or higher for high myopia across the external testing datasets with available data. In the randomly selected dataset, the deep learning algorithms outperformed all six expert graders in detection of each condition (AUC of 0·978 [0·957-0·994] for myopic macular degeneration and 0·973 [0·941-0·995] for high myopia). We also successfully used blockchain technology for data transfer, model transfer, and model testing between sites and across two countries. INTERPRETATION: Deep learning algorithms can be effective tools for risk stratification and screening of myopic macular degeneration and high myopia among the large global population with myopia. The blockchain platform developed here could potentially serve as a trusted platform for performance testing of future AI models in medicine. FUNDING: None.

摘要

背景:到 2050 年,预计全球将有近 50 亿人近视,其中 20%可能患有高度近视,并有发生威胁视力的并发症(如近视性黄斑病变)的临床显著风险。这些诊断通常需要专科评估或使用多件互不相连的设备进行测量。人工智能(AI)方法可能有助于进行风险分层,并识别出视力丧失风险最高的个体。然而,AI 医学研究仍存在未解决的挑战,包括缺乏透明度、可审核性和可追溯性。

方法:在这项回顾性多队列研究中,我们使用总共 226686 张视网膜图像,开发并测试了基于视网膜照片的深度学习算法,以检测近视性黄斑病变和高度近视。首先,我们在来自新加坡的数据集上训练和内部验证算法,然后在来自中国、中国台湾、印度、俄罗斯和英国的数据集上进行外部测试。我们还比较了深度学习算法与六位人类专家在对来自外部数据集的 400 张随机选择图像数据集的分级中的表现。作为概念验证,我们使用基于区块链的 AI 平台来展示安全数据传输、模型传输和模型测试在新加坡和中国的三个地点的实际应用。

结果:深度学习算法在外部测试数据集上具有稳健的诊断性能,其用于检测近视性黄斑病变的受试者工作特征曲线下面积(AUC)为 0.969(95%CI 0.959-0.977)或更高,用于检测高度近视的 AUC 为 0.913(0.906-0.920)或更高。在随机选择的数据集上,深度学习算法在检测每种疾病方面均优于所有六位专家分级器(用于检测近视性黄斑病变的 AUC 为 0.978(0.957-0.994),用于检测高度近视的 AUC 为 0.973(0.941-0.995))。我们还成功地使用区块链技术在站点之间以及两个国家之间进行数据传输、模型传输和模型测试。

解释:深度学习算法可以成为一种有效的工具,用于对全球近视人群进行近视性黄斑病变和高度近视的风险分层和筛查。此处开发的区块链平台有可能成为医学中未来 AI 模型性能测试的可信平台。

资助:无。

相似文献

[1]
Retinal photograph-based deep learning algorithms for myopia and a blockchain platform to facilitate artificial intelligence medical research: a retrospective multicohort study.

Lancet Digit Health. 2021-5

[2]
Automatic Screening and Identifying Myopic Maculopathy on Optical Coherence Tomography Images Using Deep Learning.

Transl Vis Sci Technol. 2021-11-1

[3]
Privacy-Preserving Technology Using Federated Learning and Blockchain in Protecting against Adversarial Attacks for Retinal Imaging.

Ophthalmology. 2025-4

[4]
Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs.

Clin Exp Ophthalmol. 2019-7-25

[5]
Referral for disease-related visual impairment using retinal photograph-based deep learning: a proof-of-concept, model development study.

Lancet Digit Health. 2021-1

[6]
Application of Comprehensive Artificial intelligence Retinal Expert (CARE) system: a national real-world evidence study.

Lancet Digit Health. 2021-8

[7]
Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs.

Lancet Digit Health. 2021-5

[8]
Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.

Lancet Digit Health. 2019-5

[9]
Fully automated detection of retinal disorders by image-based deep learning.

Graefes Arch Clin Exp Ophthalmol. 2019-3

[10]
Development of a deep learning algorithm for myopic maculopathy classification based on OCT images using transfer learning.

Front Public Health. 2022

引用本文的文献

[1]
An artificial intelligence cloud platform for OCT-based retinal anomalies screening system in real clinical environments.

NPJ Digit Med. 2025-8-29

[2]
Artificial intelligence in ophthalmology: a bibliometric analysis of the 5-year trends in literature.

Front Med (Lausanne). 2025-7-1

[3]
IMI-Instrumentation for Myopia Management.

Invest Ophthalmol Vis Sci. 2025-7-1

[4]
Application of artificial intelligence in myopia prevention and control.

Pediatr Investig. 2025-3-18

[5]
Fundus Refraction Offset as an Individualized Myopia Biomarker.

JAMA Ophthalmol. 2025-6-5

[6]
Blockchain for Securing AI-Driven Healthcare Systems: A Systematic Review and Future Research Perspectives.

Cureus. 2025-4-28

[7]
Global trends and hotspots in artificial intelligence for high myopia: a bibliometric analysis.

Front Med (Lausanne). 2025-5-9

[8]
Multimodal AI diagnostic system for neuromyelitis optica based on ultrawide-field fundus photography.

Front Med (Lausanne). 2025-5-7

[9]
Artificial intelligence in pathologic myopia: a review of clinical research studies.

Front Med (Lausanne). 2025-4-23

[10]
Artificial intelligence technology in ophthalmology public health: current applications and future directions.

Front Cell Dev Biol. 2025-4-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索