Suppr超能文献

基于图像的深度学习技术对视网膜疾病进行全自动检测。

Fully automated detection of retinal disorders by image-based deep learning.

作者信息

Li Feng, Chen Hua, Liu Zheng, Zhang Xuedian, Wu Zhizheng

机构信息

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.

Department of Precision Mechanical Engineering, Shanghai University, Shanghai, 200072, China.

出版信息

Graefes Arch Clin Exp Ophthalmol. 2019 Mar;257(3):495-505. doi: 10.1007/s00417-018-04224-8. Epub 2019 Jan 4.

Abstract

PURPOSE

With the aging population and the global diabetes epidemic, the prevalence of age-related macular degeneration (AMD) and diabetic macular edema (DME) diseases which are the leading causes of blindness is further increasing. Intravitreal injections with anti-vascular endothelial growth factor (anti-VEGF) medications are the standard of care for their indications. Optical coherence tomography (OCT), as a noninvasive imaging modality, plays a major part in guiding the administration of anti-VEGF therapy by providing detailed cross-sectional scans of the retina pathology. Fully automating OCT image detection can significantly decrease the tedious clinician labor and obtain a faithful pre-diagnosis from the analysis of the structural elements of the retina. Thereby, we explore the use of deep transfer learning method based on the visual geometry group 16 (VGG-16) network for classifying AMD and DME in OCT images accurately and automatically.

METHOD

A total of 207,130 retinal OCT images between 2013 and 2017 were selected from retrospective cohorts of 5319 adult patients from the Shiley Eye Institute of the University of California San Diego, the California Retinal Research Foundation, Medical Center Ophthalmology Associates, the Shanghai First People's Hospital, and the Beijing Tongren Eye Center, with 109,312 images (37,456 with choroidal neovascularization, 11,599 with diabetic macular edema, 8867 with drusen, and 51,390 normal) for the experiment. After images preprocessing, 1000 images (250 images from each category) from 633 patients were selected as validation dataset while the rest images from another 4686 patients were used as training dataset. We used deep transfer learning method to fine-tune the VGG-16 network pre-trained on the ImageNet dataset, and evaluated its performance on the validation dataset. Then, prediction accuracy, sensitivity, specificity, and receiver-operating characteristic (ROC) were calculated.

RESULTS

Experimental results proved that the proposed approach had manifested superior performance in retinal OCT images detection, which achieved a prediction accuracy of 98.6%, with a sensitivity of 97.8%, a specificity of 99.4%, and introduced an area under the ROC curve of 100%.

CONCLUSION

Deep transfer learning method based on the VGG-16 network shows significant effectiveness on classification of retinal OCT images with a relatively small dataset, which can provide assistant support for medical decision-making. Moreover, the performance of the proposed approach is comparable to that of human experts with significant clinical experience. Thereby, it will find promising applications in an automatic diagnosis and classification of common retinal diseases.

摘要

目的

随着人口老龄化和全球糖尿病的流行,作为失明主要原因的年龄相关性黄斑变性(AMD)和糖尿病性黄斑水肿(DME)疾病的患病率进一步上升。玻璃体内注射抗血管内皮生长因子(anti-VEGF)药物是其适应症的标准治疗方法。光学相干断层扫描(OCT)作为一种非侵入性成像方式,通过提供视网膜病理的详细横断面扫描,在指导抗VEGF治疗的给药中发挥着重要作用。完全自动化OCT图像检测可以显著减少临床医生的繁琐工作,并通过对视网膜结构元素的分析获得可靠的预诊断。因此,我们探索基于视觉几何组16(VGG-16)网络的深度迁移学习方法,以准确、自动地对OCT图像中的AMD和DME进行分类。

方法

从加利福尼亚大学圣地亚哥分校的希利眼科研究所、加利福尼亚视网膜研究基金会、医学中心眼科协会、上海第一人民医院和北京同仁眼科中心的5319名成年患者的回顾性队列中,选取2013年至2017年期间的207,130张视网膜OCT图像,其中109,312张图像(37,456张有脉络膜新生血管,11,599张有糖尿病性黄斑水肿,8867张有玻璃膜疣,51,390张正常)用于实验。经过图像预处理后,从633名患者中选取1000张图像(每个类别250张)作为验证数据集,而另外4686名患者的其余图像用作训练数据集。我们使用深度迁移学习方法对在ImageNet数据集上预训练的VGG-16网络进行微调,并在验证数据集上评估其性能。然后,计算预测准确率、灵敏度、特异性和受试者操作特征(ROC)。

结果

实验结果证明,所提出的方法在视网膜OCT图像检测中表现出卓越的性能,其预测准确率达到98.6%,灵敏度为97.8%,特异性为99.4%,ROC曲线下面积为100%。

结论

基于VGG-16网络的深度迁移学习方法在相对较小的数据集上对视网膜OCT图像分类显示出显著效果,可为医疗决策提供辅助支持。此外,所提出方法的性能与具有丰富临床经验的人类专家相当。因此,它在常见视网膜疾病的自动诊断和分类中将有广阔的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验