Suppr超能文献

脑功能连接的去歧义

Disambiguating brain functional connectivity.

机构信息

FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom; Department of Paediatrics, University of Oxford, Oxford, OX3 7JX, United Kingdom.

FMRIB Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, United Kingdom; Institute of Cognitive Neuroscience, University College London, WC1N 3AZ, United Kingdom.

出版信息

Neuroimage. 2018 Jun;173:540-550. doi: 10.1016/j.neuroimage.2018.01.053. Epub 2018 Feb 21.

Abstract

Functional connectivity (FC) analyses of correlations of neural activity are used extensively in neuroimaging and electrophysiology to gain insights into neural interactions. However, analyses assessing changes in correlation fail to distinguish effects produced by sources as different as changes in neural signal amplitudes or noise levels. This ambiguity substantially diminishes the value of FC for inferring system properties and clinical states. Network modelling approaches may avoid ambiguities, but require specific assumptions. We present an enhancement to FC analysis with improved specificity of inferences, minimal assumptions and no reduction in flexibility. The Additive Signal Change (ASC) approach characterizes FC changes into certain prevalent classes of signal change that involve the input of additional signal to existing activity. With FMRI data, the approach reveals a rich diversity of signal changes underlying measured changes in FC, suggesting that it could clarify our current understanding of FC changes in many contexts. The ASC method can also be used to disambiguate other measures of dependency, such as regression and coherence, providing a flexible tool for the analysis of neural data.

摘要

功能连接(FC)分析是神经影像学和电生理学中广泛用于深入了解神经相互作用的方法,用于分析神经活动相关性。然而,评估相关性变化的分析方法无法区分源产生的影响,例如神经信号幅度或噪声水平的变化。这种不明确性大大降低了 FC 用于推断系统特性和临床状态的价值。网络建模方法可以避免这种不明确性,但需要特定的假设。我们提出了一种 FC 分析的增强方法,具有更高的推断特异性、最小的假设和不降低灵活性。加性信号变化(ASC)方法将 FC 变化特征化为涉及现有活动中输入额外信号的某些常见信号变化类别。使用 fMRI 数据,该方法揭示了测量的 FC 变化背后丰富多样的信号变化,表明它可以澄清我们目前在许多情况下对 FC 变化的理解。ASC 方法还可用于消除其他依赖性度量(如回归和相干性)的歧义,为神经数据的分析提供了一种灵活的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0691/5929905/039d7eaae89c/gr1.jpg

相似文献

1
Disambiguating brain functional connectivity.
Neuroimage. 2018 Jun;173:540-550. doi: 10.1016/j.neuroimage.2018.01.053. Epub 2018 Feb 21.
3
Impact of global signal regression on characterizing dynamic functional connectivity and brain states.
Neuroimage. 2018 Jun;173:127-145. doi: 10.1016/j.neuroimage.2018.02.036. Epub 2018 Feb 21.
4
Interpreting temporal fluctuations in resting-state functional connectivity MRI.
Neuroimage. 2017 Dec;163:437-455. doi: 10.1016/j.neuroimage.2017.09.012. Epub 2017 Sep 12.
5
Resting state networks in empirical and simulated dynamic functional connectivity.
Neuroimage. 2017 Oct 1;159:388-402. doi: 10.1016/j.neuroimage.2017.07.065. Epub 2017 Aug 3.
7
Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest.
Neuroimage. 2020 Sep;218:116871. doi: 10.1016/j.neuroimage.2020.116871. Epub 2020 Apr 23.
8
Functional brain connectivity is predictable from anatomic network's Laplacian eigen-structure.
Neuroimage. 2018 May 15;172:728-739. doi: 10.1016/j.neuroimage.2018.02.016. Epub 2018 Feb 14.
9
Network analysis of whole-brain fMRI dynamics: A new framework based on dynamic communicability.
Neuroimage. 2019 Nov 1;201:116007. doi: 10.1016/j.neuroimage.2019.116007. Epub 2019 Jul 12.
10
Differential Covariance: A New Method to Estimate Functional Connectivity in fMRI.
Neural Comput. 2020 Dec;32(12):2389-2421. doi: 10.1162/neco_a_01323. Epub 2020 Sep 18.

引用本文的文献

1
The impact of functional correlations on task information coding.
Netw Neurosci. 2024 Dec 10;8(4):1331-1354. doi: 10.1162/netn_a_00402. eCollection 2024.
2
Altered Functional Connectivity of the Thalamus Subregions Associated with Impaired Attention After Sleep Deprivation.
Nat Sci Sleep. 2024 Jul 29;16:1109-1118. doi: 10.2147/NSS.S472323. eCollection 2024.
3
Findings of PTSD-specific deficits in default mode network strength following a mild experimental stressor.
NPP Digit Psychiatry Neurosci. 2024;2(1):9. doi: 10.1038/s44277-024-00011-y. Epub 2024 Jun 17.
4
Edge-Community Entropy Is a Novel Neural Correlate of Aging and Moderator of Fluid Cognition.
J Neurosci. 2024 Jun 19;44(25):e1701232024. doi: 10.1523/JNEUROSCI.1701-23.2024.
5
Subthalamic nucleus shows opposite functional connectivity pattern in Huntington's and Parkinson's disease.
Brain Commun. 2023 Dec 6;5(6):fcad282. doi: 10.1093/braincomms/fcad282. eCollection 2023.
6
Network biomarkers in recovered psychosis patients who discontinued antipsychotics.
Mol Psychiatry. 2023 Sep;28(9):3717-3726. doi: 10.1038/s41380-023-02279-6. Epub 2023 Sep 29.
7
From correlation to communication: Disentangling hidden factors from functional connectivity changes.
Netw Neurosci. 2023 Jun 30;7(2):411-430. doi: 10.1162/netn_a_00290. eCollection 2023.
8
Noninvasive modulation of human corticostriatal activity.
Proc Natl Acad Sci U S A. 2023 Apr 11;120(15):e2219693120. doi: 10.1073/pnas.2219693120. Epub 2023 Apr 6.
9
Amplitudes of resting-state functional networks - investigation into their correlates and biophysical properties.
Neuroimage. 2023 Jan;265:119779. doi: 10.1016/j.neuroimage.2022.119779. Epub 2022 Dec 1.
10
Decreased resting perfusion in precuneus and posterior cingulate cortex predicts tinnitus severity.
Curr Res Neurobiol. 2021 Apr 1;2:100010. doi: 10.1016/j.crneur.2021.100010. eCollection 2021.

本文引用的文献

1
Brain network dynamics are hierarchically organized in time.
Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12827-12832. doi: 10.1073/pnas.1705120114. Epub 2017 Oct 30.
2
The heritability of multi-modal connectivity in human brain activity.
Elife. 2017 Jul 26;6:e20178. doi: 10.7554/eLife.20178.
3
Discovering dynamic brain networks from big data in rest and task.
Neuroimage. 2018 Oct 15;180(Pt B):646-656. doi: 10.1016/j.neuroimage.2017.06.077. Epub 2017 Jun 29.
4
Disentangling resting-state BOLD variability and PCC functional connectivity in 22q11.2 deletion syndrome.
Neuroimage. 2017 Apr 1;149:85-97. doi: 10.1016/j.neuroimage.2017.01.064. Epub 2017 Jan 29.
5
The dynamic functional connectome: State-of-the-art and perspectives.
Neuroimage. 2017 Oct 15;160:41-54. doi: 10.1016/j.neuroimage.2016.12.061. Epub 2016 Dec 26.
6
Functional connectivity change as shared signal dynamics.
J Neurosci Methods. 2016 Feb 1;259:22-39. doi: 10.1016/j.jneumeth.2015.11.011. Epub 2015 Nov 28.
7
A positive-negative mode of population covariation links brain connectivity, demographics and behavior.
Nat Neurosci. 2015 Nov;18(11):1565-7. doi: 10.1038/nn.4125. Epub 2015 Sep 28.
8
Intrinsic functional connectivity differentiates minimally conscious from unresponsive patients.
Brain. 2015 Sep;138(Pt 9):2619-31. doi: 10.1093/brain/awv169. Epub 2015 Jun 27.
9
Functional connectivity dynamics: modeling the switching behavior of the resting state.
Neuroimage. 2015 Jan 15;105:525-35. doi: 10.1016/j.neuroimage.2014.11.001. Epub 2014 Nov 10.
10
Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach.
Neuroimage. 2014 Nov 1;101:531-46. doi: 10.1016/j.neuroimage.2014.06.052. Epub 2014 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验