Suppr超能文献

静息态功能磁共振成像中动态双变量相关性评估:一项比较研究及新方法

Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach.

作者信息

Lindquist Martin A, Xu Yuting, Nebel Mary Beth, Caffo Brain S

机构信息

Department of Biostatistics, Johns Hopkins University, USA.

Department of Biostatistics, Johns Hopkins University, USA.

出版信息

Neuroimage. 2014 Nov 1;101:531-46. doi: 10.1016/j.neuroimage.2014.06.052. Epub 2014 Jun 30.

Abstract

To date, most functional Magnetic Resonance Imaging (fMRI) studies have assumed that the functional connectivity (FC) between time series from distinct brain regions is constant across time. However, recently, there has been an increased interest in quantifying possible dynamic changes in FC during fMRI experiments, as it is thought that this may provide insight into the fundamental workings of brain networks. In this work we focus on the specific problem of estimating the dynamic behavior of pair-wise correlations between time courses extracted from two different regions of the brain. We critique the commonly used sliding-window technique, and discuss some alternative methods used to model volatility in the finance literature that could also prove to be useful in the neuroimaging setting. In particular, we focus on the Dynamic Conditional Correlation (DCC) model, which provides a model-based approach towards estimating dynamic correlations. We investigate the properties of several techniques in a series of simulation studies and find that DCC achieves the best overall balance between sensitivity and specificity in detecting dynamic changes in correlations. We also investigate its scalability beyond the bivariate case to demonstrate its utility for studying dynamic correlations between more than two brain regions. Finally, we illustrate its performance in an application to test-retest resting state fMRI data.

摘要

迄今为止,大多数功能磁共振成像(fMRI)研究都假定,来自不同脑区的时间序列之间的功能连接性(FC)在整个时间过程中是恒定的。然而,最近,人们越来越关注在fMRI实验中量化FC可能的动态变化,因为据认为这可能有助于深入了解脑网络的基本运作。在这项工作中,我们专注于估计从大脑两个不同区域提取的时间进程之间成对相关性的动态行为这一具体问题。我们对常用的滑动窗口技术提出批评,并讨论一些在金融文献中用于对波动性进行建模的替代方法,这些方法在神经成像环境中也可能被证明是有用的。特别是,我们专注于动态条件相关(DCC)模型,它提供了一种基于模型的方法来估计动态相关性。我们在一系列模拟研究中研究了几种技术的特性,发现DCC在检测相关性动态变化时在敏感性和特异性之间实现了最佳的总体平衡。我们还研究了它在双变量情况之外的可扩展性,以证明其在研究两个以上脑区之间动态相关性方面的效用。最后,我们在对静息态fMRI数据进行重测的应用中展示了它的性能。

相似文献

1
Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach.
Neuroimage. 2014 Nov 1;101:531-46. doi: 10.1016/j.neuroimage.2014.06.052. Epub 2014 Jun 30.
2
Comparing test-retest reliability of dynamic functional connectivity methods.
Neuroimage. 2017 Sep;158:155-175. doi: 10.1016/j.neuroimage.2017.07.005. Epub 2017 Jul 5.
4
Test-retest reliability of dynamic functional connectivity in resting state fMRI.
Neuroimage. 2018 Dec;183:907-918. doi: 10.1016/j.neuroimage.2018.08.021. Epub 2018 Aug 16.
5
Interpreting temporal fluctuations in resting-state functional connectivity MRI.
Neuroimage. 2017 Dec;163:437-455. doi: 10.1016/j.neuroimage.2017.09.012. Epub 2017 Sep 12.
6
Dynamic effective connectivity in resting state fMRI.
Neuroimage. 2018 Oct 15;180(Pt B):594-608. doi: 10.1016/j.neuroimage.2017.11.033. Epub 2017 Nov 20.
7
Dynamic mode decomposition of resting-state and task fMRI.
Neuroimage. 2019 Jul 1;194:42-54. doi: 10.1016/j.neuroimage.2019.03.019. Epub 2019 Mar 20.
8
Sliding window correlation analysis: Modulating window shape for dynamic brain connectivity in resting state.
Neuroimage. 2019 Apr 1;189:655-666. doi: 10.1016/j.neuroimage.2019.02.001. Epub 2019 Feb 2.
9
Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models.
Neuroimage. 2019 May 1;191:243-257. doi: 10.1016/j.neuroimage.2019.02.013. Epub 2019 Feb 10.
10
Sparse temporally dynamic resting-state functional connectivity networks for early MCI identification.
Brain Imaging Behav. 2016 Jun;10(2):342-56. doi: 10.1007/s11682-015-9408-2.

引用本文的文献

2
Introduction to correlation networks: Interdisciplinary approaches beyond thresholding.
Phys Rep. 2025 Aug 21;1136:1-39. doi: 10.1016/j.physrep.2025.06.002. Epub 2025 Jun 30.
3
Generation of surrogate brain maps preserving spatial autocorrelation through random rotation of geometric eigenmodes.
Imaging Neurosci (Camb). 2025 Jul 16;3. doi: 10.1162/IMAG.a.71. eCollection 2025.
4
Temporal variability of brain-behavior relationships in fine-scale dynamics of edge time series.
Imaging Neurosci (Camb). 2025 Jan 23;3. doi: 10.1162/imag_a_00443. eCollection 2025.
5
Unveiling hidden sources of dynamic functional connectome through a novel regularized blind source separation approach.
Imaging Neurosci (Camb). 2024 Jul 12;2. doi: 10.1162/imag_a_00220. eCollection 2024.
6
Time-varying functional connectivity as Wishart processes.
Imaging Neurosci (Camb). 2024 Jun 5;2. doi: 10.1162/imag_a_00184. eCollection 2024.
7
Causal functional mediation analysis with an application to functional magnetic resonance imaging data.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf019.
9
Topological signatures of brain dynamics: persistent homology reveals individuality and brain-behavior links.
Front Hum Neurosci. 2025 May 30;19:1607941. doi: 10.3389/fnhum.2025.1607941. eCollection 2025.

本文引用的文献

1
Detecting functional connectivity change points for single-subject fMRI data.
Front Comput Neurosci. 2013 Oct 30;7:143. doi: 10.3389/fncom.2013.00143. eCollection 2013.
2
Dynamic functional connectivity: promise, issues, and interpretations.
Neuroimage. 2013 Oct 15;80:360-78. doi: 10.1016/j.neuroimage.2013.05.079. Epub 2013 May 24.
3
EEG correlates of time-varying BOLD functional connectivity.
Neuroimage. 2013 May 15;72:227-36. doi: 10.1016/j.neuroimage.2013.01.049. Epub 2013 Jan 31.
4
Dynamic BOLD functional connectivity in humans and its electrophysiological correlates.
Front Hum Neurosci. 2012 Dec 28;6:339. doi: 10.3389/fnhum.2012.00339. eCollection 2012.
5
Tracking whole-brain connectivity dynamics in the resting state.
Cereb Cortex. 2014 Mar;24(3):663-76. doi: 10.1093/cercor/bhs352. Epub 2012 Nov 11.
6
Periodic changes in fMRI connectivity.
Neuroimage. 2012 Nov 15;63(3):1712-9. doi: 10.1016/j.neuroimage.2012.06.078. Epub 2012 Jul 14.
7
Non-stationarity in the "resting brain's" modular architecture.
PLoS One. 2012;7(6):e39731. doi: 10.1371/journal.pone.0039731. Epub 2012 Jun 28.
9
Dynamic connectivity regression: determining state-related changes in brain connectivity.
Neuroimage. 2012 Jul 16;61(4):907-20. doi: 10.1016/j.neuroimage.2012.03.070. Epub 2012 Mar 30.
10
A sliding time-window ICA reveals spatial variability of the default mode network in time.
Brain Connect. 2011;1(4):339-47. doi: 10.1089/brain.2011.0036.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验