Suppr超能文献

基于纳米沸石-酶复合物的生物催化剂:烷氧基硅烷表面功能化的影响及利用微藻油脂原料生产生物燃料。

Biocatalysts based on nanozeolite-enzyme complexes: Effects of alkoxysilane surface functionalization and biofuel production using microalgae lipids feedstock.

机构信息

Laboratory for Clean Energy Technology (LACET), Physics Department, São Paulo State University-UNESP, Campus de São José do Rio Preto, SP, 15054-000, Brazil.

Greentec Laboratory, School of Chemistry, Federal University of Rio de Janeiro, RJ, 21941-972, Brazil.

出版信息

Colloids Surf B Biointerfaces. 2018 May 1;165:150-157. doi: 10.1016/j.colsurfb.2018.02.029. Epub 2018 Feb 14.

Abstract

Nanozeolites with different crystallographic structures (Nano/TS1, Nano/GIS, Nano/LTA, Nano/BEA, Nano/X, and Nano-X/Ni), functionalized with (3-aminopropyl)trimethoxysilane (APTMS) and crosslinked with glutaraldehyde (GA), were studied as solid supports for Thermomyces lanuginosus lipase (TLL) immobilization. Physicochemical characterizations of the surface-functionalized nanozeolites and nanozeolite-enzyme complexes were performed using XRD, SEM, AFM, ATR-FTIR, and zeta potential measurements. The experimental enzymatic activity results indicated that the nanozeolitic supports functionalized with APTMS and GA immobilized larger amounts of enzymes and provided higher enzymatic activities, compared to unfunctionalized supports. Correlations were observed among the nanozeolite surface charges, the enzyme immobilization efficiencies, and the biocatalyst activities. The catalytic performance and reusability of these enzyme-nanozeolite complexes were evaluated in the ethanolysis transesterification of microalgae oil to fatty acid ethyl esters (FAEEs). TLL immobilized on the nanozeolite supports functionalized with APTMS and GA provided the most efficient biocatalysis, with FAEEs yields above 93% and stability during five reaction cycles. Lower FAEEs yields and poorer catalytic stability were found for nanozeolite-enzyme complexes prepared only by physical adsorption. The findings indicated the viability of designing highly efficient biocatalysts for biofuel production by means of chemical modulation of nanozeolite surfaces. The high biocatalyst catalytic efficiency observed in ethanolysis reactions using a lipid feedstock that does not compete with food production is an advantage that should encourage the industrial application of these biocatalysts.

摘要

具有不同晶体结构的纳米沸石(Nano/TS1、Nano/GIS、Nano/LTA、Nano/BEA、Nano/X 和 Nano-X/Ni),经过(3-氨丙基)三甲氧基硅烷(APTMS)功能化和戊二醛(GA)交联,被研究作为固定化嗜热真菌脂肪酶(TLL)的固体载体。通过 XRD、SEM、AFM、ATR-FTIR 和 ζ 电位测量对表面功能化纳米沸石和纳米沸石-酶复合物进行了物理化学特性分析。实验酶活性结果表明,与未功能化的载体相比,用 APTMS 和 GA 功能化的纳米沸石载体固定了更多的酶,提供了更高的酶活性。纳米沸石表面电荷、酶固定化效率和生物催化剂活性之间存在相关性。这些酶-纳米沸石复合物的催化性能和可重复使用性在微藻油的乙醇解转酯化反应中进行了评估,生成脂肪酸乙酯(FAEEs)。TLL 固定在经过 APTMS 和 GA 功能化的纳米沸石载体上提供了最有效的生物催化,FAEEs 的产率超过 93%,并且在五个反应循环中具有稳定性。仅通过物理吸附制备的纳米沸石-酶复合物的 FAEEs 产率较低,催化稳定性较差。研究结果表明,通过化学修饰纳米沸石表面来设计高效生物催化剂用于生物燃料生产是可行的。在使用不与食品生产竞争的脂质原料进行乙醇解反应中观察到的高生物催化剂催化效率是一个优势,应该鼓励这些生物催化剂的工业应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验