Suppr超能文献

多个数据集的多变量分析:化学生态学实用指南

Multivariate Analysis of Multiple Datasets: a Practical Guide for Chemical Ecology.

作者信息

Hervé Maxime R, Nicolè Florence, Lê Cao Kim-Anh

机构信息

University of Rennes, Inra, Agrocampus Ouest, IGEPP - UMR-A 1349, F-35000, Rennes, France.

University of Lyon, UJM-Saint-Etienne, CNRS, LBVpam FRE 3727, EA 3061, F-42023, Saint-Etienne, France.

出版信息

J Chem Ecol. 2018 Mar;44(3):215-234. doi: 10.1007/s10886-018-0932-6. Epub 2018 Feb 25.

Abstract

Chemical ecology has strong links with metabolomics, the large-scale study of all metabolites detectable in a biological sample. Consequently, chemical ecologists are often challenged by the statistical analyses of such large datasets. This holds especially true when the purpose is to integrate multiple datasets to obtain a holistic view and a better understanding of a biological system under study. The present article provides a comprehensive resource to analyze such complex datasets using multivariate methods. It starts from the necessary pre-treatment of data including data transformations and distance calculations, to the application of both gold standard and novel multivariate methods for the integration of different omics data. We illustrate the process of analysis along with detailed results interpretations for six issues representative of the different types of biological questions encountered by chemical ecologists. We provide the necessary knowledge and tools with reproducible R codes and chemical-ecological datasets to practice and teach multivariate methods.

摘要

化学生态学与代谢组学有着紧密联系,代谢组学是对生物样品中可检测到的所有代谢物进行的大规模研究。因此,化学生态学家常常面临对此类大型数据集进行统计分析的挑战。当目的是整合多个数据集以全面了解和更好地理解所研究的生物系统时,情况尤其如此。本文提供了一个全面的资源,用于使用多变量方法分析此类复杂数据集。它从数据的必要预处理(包括数据转换和距离计算)开始,到应用金标准和新颖的多变量方法来整合不同的组学数据。我们结合对六个问题的详细结果解释来说明分析过程,这些问题代表了化学生态学家遇到的不同类型的生物学问题。我们提供必要的知识和工具以及可重复使用的R代码和化学生态数据集,以实践和教授多变量方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验