Suppr超能文献

利用基于混合有限元的配准方法来量化肺癌患者自适应治疗的异质性肿瘤反应。

Utilization of a hybrid finite-element based registration method to quantify heterogeneous tumor response for adaptive treatment for lung cancer patients.

机构信息

Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, United States of America. Department of Physics, Oakland University, Rochester, MI, United States of America.

出版信息

Phys Med Biol. 2018 Mar 21;63(6):065017. doi: 10.1088/1361-6560/aab235.

Abstract

Tumor response to radiation treatment (RT) can be evaluated from changes in metabolic activity between two positron emission tomography (PET) images. Activity changes at individual voxels in pre-treatment PET images (PET1), however, cannot be derived until their associated PET-CT (CT1) images are appropriately registered to during-treatment PET-CT (CT2) images. This study aimed to investigate the feasibility of using deformable image registration (DIR) techniques to quantify radiation-induced metabolic changes on PET images. Five patients with non-small-cell lung cancer (NSCLC) treated with adaptive radiotherapy were considered. PET-CTs were acquired two weeks before RT and 18 fractions after the start of RT. DIR was performed from CT1 to CT2 using B-Spline and diffeomorphic Demons algorithms. The resultant displacements in the tumor region were then corrected using a hybrid finite element method (FEM). Bitmap masks generated from gross tumor volumes (GTVs) in PET1 were deformed using the four different displacement vector fields (DVFs). The conservation of total lesion glycolysis (TLG) in GTVs was used as a criterion to evaluate the quality of these registrations. The deformed masks were united to form a large mask which was then partitioned into multiple layers from center to border. The averages of SUV changes over all the layers were 1.0  ±  1.3, 1.0  ±  1.2, 0.8  ±  1.3, 1.1  ±  1.5 for the B-Spline, B-Spline  +  FEM, Demons and Demons  +  FEM algorithms, respectively. TLG changes before and after mapping using B-Spline, Demons, hybrid-B-Spline, and hybrid-Demons registrations were 20.2%, 28.3%, 8.7%, and 2.2% on average, respectively. Compared to image intensity-based DIR algorithms, the hybrid FEM modeling technique is better in preserving TLG and could be useful for evaluation of tumor response for patients with regressing tumors.

摘要

肿瘤对放射治疗(RT)的反应可以通过两次正电子发射断层扫描(PET)图像之间代谢活性的变化来评估。然而,在对治疗期间的 PET-CT(CT2)图像进行适当配准之前,无法从治疗前的 PET 图像(PET1)中的各个体素的活性变化中得出。本研究旨在探讨使用变形图像配准(DIR)技术在 PET 图像上量化辐射诱导代谢变化的可行性。研究了 5 名接受自适应放疗的非小细胞肺癌(NSCLC)患者。在 RT 前两周和 RT 开始后 18 个分次采集 PET-CT。使用 B 样条和非刚性 Demons 算法从 CT1 到 CT2 进行 DIR。然后使用混合有限元方法(FEM)对肿瘤区域的位移进行校正。从 PET1 中的大体肿瘤体积(GTV)生成的位图掩模使用四个不同的位移矢量场(DVF)进行变形。GTV 中总病变糖酵解(TLG)的守恒作为评估这些配准质量的标准。变形的掩模被联合形成一个大掩模,然后从中心到边界将其划分为多个层。所有层的 SUV 变化平均值分别为 1.0 ± 1.3、1.0 ± 1.2、0.8 ± 1.3、1.1 ± 1.5,用于 B 样条、B 样条+FEM、Demons 和 Demons+FEM 算法。使用 B 样条、Demons、混合 B 样条和混合 Demons 配准映射前后的 TLG 变化平均分别为 20.2%、28.3%、8.7%和 2.2%。与基于图像强度的 DIR 算法相比,混合 FEM 建模技术在保留 TLG 方面更有优势,可用于评估肿瘤反应。

相似文献

2
Adaptive radiotherapy for NSCLC patients: utilizing the principle of energy conservation to evaluate dose mapping operations.
Phys Med Biol. 2017 Jun 7;62(11):4333-4345. doi: 10.1088/1361-6560/aa54a5. Epub 2017 May 5.
3
Evaluation of adaptive treatment planning for patients with non-small cell lung cancer.
Phys Med Biol. 2017 Jun 7;62(11):4346-4360. doi: 10.1088/1361-6560/aa586f. Epub 2017 Jan 10.
6
An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy.
Phys Med Biol. 2015 Apr 7;60(7):2837-51. doi: 10.1088/0031-9155/60/7/2837. Epub 2015 Mar 17.
8
A finite element method to correct deformable image registration errors in low-contrast regions.
Phys Med Biol. 2012 Jun 7;57(11):3499-515. doi: 10.1088/0031-9155/57/11/3499. Epub 2012 May 11.
9
Accuracy and Utility of Deformable Image Registration in (68)Ga 4D PET/CT Assessment of Pulmonary Perfusion Changes During and After Lung Radiation Therapy.
Int J Radiat Oncol Biol Phys. 2015 Sep 1;93(1):196-204. doi: 10.1016/j.ijrobp.2015.05.011. Epub 2015 May 14.
10

引用本文的文献

1
Deformable dose accumulation is required for adaptive radiotherapy practice.
J Appl Clin Med Phys. 2024 Aug;25(8):e14457. doi: 10.1002/acm2.14457. Epub 2024 Jul 19.
2
On the correction of respiratory motion-induced image reconstruction errors in positron-emission tomography-guided radiation therapy.
Phys Imaging Radiat Oncol. 2023 Mar 16;26:100430. doi: 10.1016/j.phro.2023.100430. eCollection 2023 Apr.
4
Adaptive Radiation Therapy in the Treatment of Lung Cancer: An Overview of the Current State of the Field.
Front Oncol. 2021 Nov 29;11:770382. doi: 10.3389/fonc.2021.770382. eCollection 2021.

本文引用的文献

1
Adaptive radiotherapy for NSCLC patients: utilizing the principle of energy conservation to evaluate dose mapping operations.
Phys Med Biol. 2017 Jun 7;62(11):4333-4345. doi: 10.1088/1361-6560/aa54a5. Epub 2017 May 5.
2
Evaluation of adaptive treatment planning for patients with non-small cell lung cancer.
Phys Med Biol. 2017 Jun 7;62(11):4346-4360. doi: 10.1088/1361-6560/aa586f. Epub 2017 Jan 10.
3
FDG PET/CT texture analysis for predicting the outcome of lung cancer treated by stereotactic body radiation therapy.
Eur J Nucl Med Mol Imaging. 2016 Jul;43(8):1453-60. doi: 10.1007/s00259-016-3314-8. Epub 2016 Jan 30.
4
Preclinical Assessment of Efficacy of Radiation Dose Painting Based on Intratumoral FDG-PET Uptake.
Clin Cancer Res. 2015 Dec 15;21(24):5511-8. doi: 10.1158/1078-0432.CCR-15-0290. Epub 2015 Aug 14.
5
A note on modeling of tumor regression for estimation of radiobiological parameters.
Med Phys. 2014 Aug;41(8):081702. doi: 10.1118/1.4884019.
6
The Insight ToolKit image registration framework.
Front Neuroinform. 2014 Apr 28;8:44. doi: 10.3389/fninf.2014.00044. eCollection 2014.
7
Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease.
Front Neuroinform. 2014 Jan 16;7:50. doi: 10.3389/fninf.2013.00050. eCollection 2013.
8
Predictive treatment management: incorporating a predictive tumor response model into robust prospective treatment planning for non-small cell lung cancer.
Int J Radiat Oncol Biol Phys. 2014 Feb 1;88(2):446-52. doi: 10.1016/j.ijrobp.2013.10.038. Epub 2013 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验