Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences , Suzhou 215123 , China.
ACS Appl Mater Interfaces. 2018 Mar 21;10(11):9663-9668. doi: 10.1021/acsami.7b19169. Epub 2018 Mar 7.
Black phosphorus (BP) has drawn great attention owing to its tunable band gap depending on thickness, high mobility, and large I/ I ratio, which makes BP attractive for using in future two-dimensional electronic and optoelectronic devices. However, its instability under ambient conditions poses challenge to the research and limits its practical applications. In this work, we present a feasible approach to suppress the degradation of BP by sulfur (S) doping. The fabricated S-doped BP few-layer field-effect transistors (FETs) show more stable transistor performance under ambient conditions. After exposing to air for 21 days, the charge-carrier mobility of a representative S-doped BP FETs device decreases from 607 to 470 cm V s (remained as high as 77.4%) under ambient conditions and a large I/ I ratio of ∼10 is still retained. The atomic force microscopy analysis, including surface morphology, thickness, and roughness, also indicates the lower degradation rate of S-doped BP compared to BP. First-principles calculations show that the dopant S atom energetically prefers to chemisorb on the BP surface in a dangling form and the enhanced stability of S-doped BP can be ascribed to the downshift of the conduction band minimum of BP below the redox potential of O/O. Our work suggests that S doping is an effective way to enhance the stability of black phosphorus.
黑磷(BP)由于其可调带隙取决于厚度、高迁移率和大的 I/ I 比而受到极大关注,这使得 BP 成为未来二维电子和光电子器件的有吸引力的材料。然而,其在环境条件下的不稳定性对研究提出了挑战,并限制了其实际应用。在这项工作中,我们提出了一种通过硫(S)掺杂抑制 BP 降解的可行方法。所制备的 S 掺杂 BP 少层场效应晶体管(FET)在环境条件下表现出更稳定的晶体管性能。在暴露于空气中 21 天后,在环境条件下,代表性 S 掺杂 BP FET 器件的电荷载流子迁移率从 607 降低到 470 cm V s(仍高达 77.4%),并且仍然保持着约 10 的大 I/ I 比。原子力显微镜分析,包括表面形貌、厚度和粗糙度,也表明 S 掺杂 BP 的降解速率低于 BP。第一性原理计算表明,掺杂 S 原子在悬键形式下在 BP 表面上优先化学吸附,S 掺杂 BP 的增强稳定性可以归因于 BP 的导带底低于 O/O 的氧化还原电位的下移。我们的工作表明,S 掺杂是提高黑磷稳定性的有效方法。