Division of Quantum Phases & Devices, Department of Physics , Konkuk University , Seoul 05029 , Korea.
Korea Research Institute of Standards and Science (KRISS) , Daejeon 34113 , Korea.
ACS Appl Mater Interfaces. 2018 Jun 6;10(22):18895-18901. doi: 10.1021/acsami.8b04700. Epub 2018 May 25.
Two-dimensional (2D)-layered semiconducting materials with considerable band gaps are emerging as a new class of materials applicable to next-generation devices. Particularly, black phosphorus (BP) is considered to be very promising for next-generation 2D electrical and optical devices because of its high carrier mobility of 200-1000 cm V s and large on/off ratio of 10 to 10 in field-effect transistors (FETs). However, its environmental instability in air requires fabrication processes in a glovebox filled with nitrogen or argon gas followed by encapsulation, passivation, and chemical functionalization of BP. Here, we report a new method for reduction of BP-channel devices fabricated without the use of a glovebox by galvanic corrosion of an Al overlayer. The reduction of BP induced by an anodic oxidation of Al overlayer is demonstrated through surface characterization of BP using atomic force microscopy, Raman spectroscopy, and X-ray photoemission spectroscopy along with electrical measurement of a BP-channel FET. After the deposition of an Al overlayer, the FET device shows a significantly enhanced performance, including restoration of ambipolar transport, high carrier mobility of 220 cm V s, low subthreshold swing of 0.73 V/decade, and low interface trap density of 7.8 × 10 cm eV. These improvements are attributed to both the reduction of the BP channel and the formation of an AlO interfacial layer resulting in a high- k screening effect. Moreover, ambipolar behavior of our BP-channel FET device combined with charge-trap behavior can be utilized for implementing reconfigurable memory and neuromorphic computing applications. Our study offers a simple device fabrication process for BP-channel FETs with high performance using galvanic oxidation of Al overlayers.
二维(2D)层状半导体材料具有相当大的带隙,正在成为适用于下一代器件的新材料。特别是黑磷(BP)由于其在 200-1000cmV s 的高载流子迁移率和在场效应晶体管(FET)中 10 到 10 的大开/关比,被认为是下一代 2D 电子和光学器件非常有前途的材料。然而,其在空气中的环境不稳定性要求在充满氮气或氩气的手套箱中进行制造工艺,然后对 BP 进行封装、钝化和化学功能化。在这里,我们报告了一种新的方法,可以通过 Al 覆盖层的电化腐蚀来减少没有使用手套箱制造的 BP 沟道器件。通过原子力显微镜、拉曼光谱和 X 射线光电子能谱对 BP 进行表面表征,并对 BP 沟道 FET 进行电测量,证明了 Al 覆盖层的阳极氧化诱导 BP 的还原。在沉积 Al 覆盖层之后,FET 器件的性能得到了显著提高,包括恢复双极性传输、高达 220cmV s 的高载流子迁移率、0.73V/decade 的低亚阈值摆幅和 7.8×10 cm eV 的低界面陷阱密度。这些改进归因于 BP 沟道的减少和形成 AlO 界面层,从而产生高 k 屏蔽效应。此外,我们的 BP 沟道 FET 器件的双极性行为与电荷俘获行为相结合,可以用于实现可重构存储和神经形态计算应用。我们的研究提供了一种使用 Al 覆盖层的电化氧化来制造高性能 BP 沟道 FET 的简单器件制造工艺。