MacLean Jean-Philippe W, Donohue John M, Resch Kevin J
Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario Canada, N2L 3G1.
Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario Canada, N2L 3G1.
Phys Rev Lett. 2018 Feb 2;120(5):053601. doi: 10.1103/PhysRevLett.120.053601.
Energy-time entangled photons are critical in many quantum optical phenomena and have emerged as important elements in quantum information protocols. Entanglement in this degree of freedom often manifests itself on ultrafast time scales, making it very difficult to detect, whether one employs direct or interferometric techniques, as photon-counting detectors have insufficient time resolution. Here, we implement ultrafast photon counters based on nonlinear interactions and strong femtosecond laser pulses to probe energy-time entanglement in this important regime. Using this technique and single-photon spectrometers, we characterize all the spectral and temporal correlations of two entangled photons with femtosecond resolution. This enables the witnessing of energy-time entanglement using uncertainty relations and the direct observation of nonlocal dispersion cancellation on ultrafast time scales. These techniques are essential to understand and control the energy-time degree of freedom of light for ultrafast quantum optics.
能量 - 时间纠缠光子在许多量子光学现象中至关重要,并已成为量子信息协议中的重要元素。这种自由度的纠缠通常在超快时间尺度上表现出来,这使得无论采用直接技术还是干涉技术都很难检测到,因为光子计数探测器的时间分辨率不足。在这里,我们基于非线性相互作用和强飞秒激光脉冲实现了超快光子计数器,以探测这一重要领域中的能量 - 时间纠缠。利用这项技术和单光子光谱仪,我们以飞秒分辨率表征了两个纠缠光子的所有光谱和时间相关性。这使得能够利用不确定关系见证能量 - 时间纠缠,并在超快时间尺度上直接观察非局域色散抵消。这些技术对于理解和控制超快量子光学中光的能量 - 时间自由度至关重要。