Suppr超能文献

用于光子信号处理的线性光学波能量再分配方法。

Linear optical wave energy redistribution methods for photonic signal processing.

作者信息

Rowe Connor, Zhu Xinyi, Crockett Benjamin, Lim Geunweon, Goodarzi Majid, Fernández Manuel, van Howe James, Sun Hao, Kaushal Saket, Shoeib Afsaneh, Azaña José

机构信息

Institut National de la Recherche Scientifique - Centre Énergie Matériaux et Télécommunications, 800 Rue de la Gauchetière, H5A 1K6 Montréal, QC Canada.

Instituto Balseiro (UNCuyo-CNEA) & CONICET, RN 8400 Bariloche, Argentina.

出版信息

Npj Nanophoton. 2025;2(1):13. doi: 10.1038/s44310-025-00060-x. Epub 2025 Apr 3.

Abstract

Manipulating the phase of an optical wave over time and frequency gives full control to the user to implement a wide variety of energy preserving transformations directly in the analogue optical domain. These can be achieved using widely available linear mechanisms, such as temporal phase modulation and spectral phase filtering. The techniques based on these linear optical wave energy redistribution (OWER) methods are inherently energy efficient and have significant speed and bandwidth advantages over digital signal processing. We describe several recent OWER methods for optical signal processing, including denoising passive amplification, real-time spectrogram analysis, passive logic computing, and more. These functionalities are relevant whenever the signal is found on a classical or quantum optical wave, or could be upconverted from radio frequencies or microwaves, and they are of interest for a wide range of applications in telecommunications, sensing, metrology, biomedical imaging, and astronomy. The energy preservation of these methods makes them particularly interesting for quantum optics applications. Furthermore, many of the individual components have been demonstrated on-chip, enabling miniaturization for applications where size and weight are a main constraint.

摘要

随时间和频率操纵光波的相位,可让用户完全控制,直接在模拟光学领域实现各种能量守恒变换。这些变换可通过广泛可用的线性机制实现,如时间相位调制和光谱相位滤波。基于这些线性光波能量重新分配(OWER)方法的技术本质上具有能源效率,并且与数字信号处理相比具有显著的速度和带宽优势。我们描述了几种用于光信号处理的最新OWER方法,包括去噪被动放大、实时频谱图分析、被动逻辑计算等等。无论信号是在经典光波还是量子光波上被发现,或者可以从射频或微波上变频,这些功能都具有相关性,并且它们对于电信、传感、计量、生物医学成像和天文学等广泛应用具有重要意义。这些方法的能量守恒特性使其在量子光学应用中特别有吸引力。此外,许多单个组件已在芯片上得到证明,这使得在尺寸和重量是主要限制因素的应用中实现小型化成为可能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a7e/11968407/2a467f1912d4/44310_2025_60_Fig1_HTML.jpg

相似文献

1
Linear optical wave energy redistribution methods for photonic signal processing.
Npj Nanophoton. 2025;2(1):13. doi: 10.1038/s44310-025-00060-x. Epub 2025 Apr 3.
2
Neuromorphic Photonic Memory Devices Using Ultrafast, Non-Volatile Phase-Change Materials.
Adv Mater. 2023 Sep;35(37):e2203909. doi: 10.1002/adma.202203909. Epub 2022 Jul 13.
3
On-chip silicon photonic signaling and processing: a review.
Sci Bull (Beijing). 2018 Oct 15;63(19):1267-1310. doi: 10.1016/j.scib.2018.05.038. Epub 2018 Jul 12.
4
On-chip electro-optic frequency shifters and beam splitters.
Nature. 2021 Nov;599(7886):587-593. doi: 10.1038/s41586-021-03999-x. Epub 2021 Nov 24.
5
Photonic (computational) memories: tunable nanophotonics for data storage and computing.
Nanophotonics. 2022 May 16;11(17):3823-3854. doi: 10.1515/nanoph-2022-0089. eCollection 2022 Sep.
7
AlGaAs Nonlinear Integrated Photonics.
Micromachines (Basel). 2022 Jun 24;13(7):991. doi: 10.3390/mi13070991.
8
Overcoming the quantum limit of optical amplification in monolithic waveguides.
Sci Adv. 2021 Sep 17;7(38):eabi8150. doi: 10.1126/sciadv.abi8150. Epub 2021 Sep 15.
9
Metasurface-Based Quantum Searcher on a Silicon-On-Insulator Chip.
Micromachines (Basel). 2022 Jul 28;13(8):1204. doi: 10.3390/mi13081204.
10
Versatile parallel signal processing with a scalable silicon photonic chip.
Nat Commun. 2025 Jan 2;16(1):288. doi: 10.1038/s41467-024-55162-5.

本文引用的文献

1
Towards the optical second: verifying optical clocks at the SI limit.
Phys Rev X. 2019;6(4). doi: 10.1364/OPTICA.6.000448.
2
Agile manipulation of the time-frequency distribution of high-speed electromagnetic waves.
Nat Commun. 2024 Oct 17;15(1):8942. doi: 10.1038/s41467-024-53025-7.
3
Integrated lithium niobate microwave photonic processing engine.
Nature. 2024 Mar;627(8002):80-87. doi: 10.1038/s41586-024-07078-9. Epub 2024 Feb 28.
4
Single-Photon Level Dispersive Fourier Transform: Ultrasensitive Characterization of Noise-Driven Nonlinear Dynamics.
ACS Photonics. 2023 Oct 25;10(11):3915-3928. doi: 10.1021/acsphotonics.3c00711. eCollection 2023 Nov 15.
6
Integrated barium titanate electro-optic modulators operating at CMOS-compatible voltage.
Appl Opt. 2023 Aug 1;62(22):6053-6059. doi: 10.1364/AO.499065.
7
Monolithic integration of embedded III-V lasers on SOI.
Light Sci Appl. 2023 Apr 3;12(1):84. doi: 10.1038/s41377-023-01128-z.
8
All-fibre phase filters with 1-GHz resolution for high-speed passive optical logic processing.
Nat Commun. 2023 Mar 31;14(1):1808. doi: 10.1038/s41467-023-37472-2.
9
Ultra-compact silicon photonics highly dispersive elements for low-latency signal processing.
Opt Express. 2023 Jan 30;31(3):3467-3478. doi: 10.1364/OE.476773.
10
Integrated femtosecond pulse generator on thin-film lithium niobate.
Nature. 2022 Dec;612(7939):252-258. doi: 10.1038/s41586-022-05345-1. Epub 2022 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验