Rowe Connor, Zhu Xinyi, Crockett Benjamin, Lim Geunweon, Goodarzi Majid, Fernández Manuel, van Howe James, Sun Hao, Kaushal Saket, Shoeib Afsaneh, Azaña José
Institut National de la Recherche Scientifique - Centre Énergie Matériaux et Télécommunications, 800 Rue de la Gauchetière, H5A 1K6 Montréal, QC Canada.
Instituto Balseiro (UNCuyo-CNEA) & CONICET, RN 8400 Bariloche, Argentina.
Npj Nanophoton. 2025;2(1):13. doi: 10.1038/s44310-025-00060-x. Epub 2025 Apr 3.
Manipulating the phase of an optical wave over time and frequency gives full control to the user to implement a wide variety of energy preserving transformations directly in the analogue optical domain. These can be achieved using widely available linear mechanisms, such as temporal phase modulation and spectral phase filtering. The techniques based on these linear optical wave energy redistribution (OWER) methods are inherently energy efficient and have significant speed and bandwidth advantages over digital signal processing. We describe several recent OWER methods for optical signal processing, including denoising passive amplification, real-time spectrogram analysis, passive logic computing, and more. These functionalities are relevant whenever the signal is found on a classical or quantum optical wave, or could be upconverted from radio frequencies or microwaves, and they are of interest for a wide range of applications in telecommunications, sensing, metrology, biomedical imaging, and astronomy. The energy preservation of these methods makes them particularly interesting for quantum optics applications. Furthermore, many of the individual components have been demonstrated on-chip, enabling miniaturization for applications where size and weight are a main constraint.
随时间和频率操纵光波的相位,可让用户完全控制,直接在模拟光学领域实现各种能量守恒变换。这些变换可通过广泛可用的线性机制实现,如时间相位调制和光谱相位滤波。基于这些线性光波能量重新分配(OWER)方法的技术本质上具有能源效率,并且与数字信号处理相比具有显著的速度和带宽优势。我们描述了几种用于光信号处理的最新OWER方法,包括去噪被动放大、实时频谱图分析、被动逻辑计算等等。无论信号是在经典光波还是量子光波上被发现,或者可以从射频或微波上变频,这些功能都具有相关性,并且它们对于电信、传感、计量、生物医学成像和天文学等广泛应用具有重要意义。这些方法的能量守恒特性使其在量子光学应用中特别有吸引力。此外,许多单个组件已在芯片上得到证明,这使得在尺寸和重量是主要限制因素的应用中实现小型化成为可能。