Suppr超能文献

短端粒——遗传性心肌病的一个标志。

Short telomeres - A hallmark of heritable cardiomyopathies.

作者信息

Chang Alex C Y, Blau Helen M

机构信息

Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.

Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.

出版信息

Differentiation. 2018 Mar-Apr;100:31-36. doi: 10.1016/j.diff.2018.02.001. Epub 2018 Feb 9.

Abstract

Cardiovascular diseases are the leading cause of death worldwide and the incidence increases with age. Genetic testing has taught us much about the pathogenic pathways that drive heritable cardiomyopathies. Here we discuss an unexpected link between shortened telomeres, a molecular marker of aging, and genetic cardiomyopathy. Positioned at the ends of chromosomes, telomeres are DNA repeats which serve as protective caps that shorten with each cell division in proliferative tissues. Cardiomyocytes are an anomaly, as they are largely non-proliferative post-birth and retain relatively stable telomere lengths throughout life in healthy individuals. However, there is mounting evidence that in disease states, cardiomyocyte telomeres significantly shorten. Moreover, this shortening may play an active role in the development of mitochondrial dysfunction central to the etiology of dilated and hypertrophic cardiomyopathies. Elucidation of the mechanisms that underlie the telomere-mitochondrial signaling axis in the heart will provide fresh insights into our understanding of genetic cardiomyopathies, and could lead to the identification of previously uncharacterized modes of therapeutic intervention.

摘要

心血管疾病是全球主要的死亡原因,其发病率随年龄增长而增加。基因检测让我们对导致遗传性心肌病的致病途径有了很多了解。在此,我们讨论衰老的分子标志物——端粒缩短与遗传性心肌病之间出人意料的联系。端粒位于染色体末端,是DNA重复序列,作为保护帽,在增殖组织中随着每次细胞分裂而缩短。心肌细胞是个例外,因为它们在出生后基本不再增殖,在健康个体中一生中端粒长度相对稳定。然而,越来越多的证据表明,在疾病状态下,心肌细胞端粒会显著缩短。此外,这种缩短可能在扩张型和肥厚型心肌病病因核心的线粒体功能障碍发展中起积极作用。阐明心脏中端粒-线粒体信号轴的潜在机制,将为我们理解遗传性心肌病提供新的见解,并可能导致发现以前未被描述的治疗干预模式。

相似文献

1
Short telomeres - A hallmark of heritable cardiomyopathies.
Differentiation. 2018 Mar-Apr;100:31-36. doi: 10.1016/j.diff.2018.02.001. Epub 2018 Feb 9.
2
Telomere shortening is a hallmark of genetic cardiomyopathies.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):9276-9281. doi: 10.1073/pnas.1714538115. Epub 2018 Aug 27.
3
Cardiomyocyte-Specific Telomere Shortening is a Distinct Signature of Heart Failure in Humans.
J Am Heart Assoc. 2017 Sep 7;6(9):e005086. doi: 10.1161/JAHA.116.005086.
4
Heart-Breaking Telomeres.
Circ Res. 2018 Sep 14;123(7):787-802. doi: 10.1161/CIRCRESAHA.118.312202.
5
Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13120-13125. doi: 10.1073/pnas.1615340113. Epub 2016 Oct 31.
6
Short Telomeres in Key Tissues Initiate Local and Systemic Aging in Zebrafish.
PLoS Genet. 2016 Jan 20;12(1):e1005798. doi: 10.1371/journal.pgen.1005798. eCollection 2016 Jan.
7
Telomerase is essential for cardiac differentiation and sustained metabolism of human cardiomyocytes.
Cell Mol Life Sci. 2024 Apr 24;81(1):196. doi: 10.1007/s00018-024-05239-7.
8
Telomere shortening in human diseases.
FEBS J. 2013 Jul;280(14):3180-93. doi: 10.1111/febs.12326. Epub 2013 Jun 24.
9
Telomeres and mitochondria in the aging heart.
Circ Res. 2012 Apr 27;110(9):1226-37. doi: 10.1161/CIRCRESAHA.111.246868.

引用本文的文献

1
2
Comprehensive review on gene mutations contributing to dilated cardiomyopathy.
Front Cardiovasc Med. 2023 Dec 1;10:1296389. doi: 10.3389/fcvm.2023.1296389. eCollection 2023.
3
MYH7 in cardiomyopathy and skeletal muscle myopathy.
Mol Cell Biochem. 2024 Feb;479(2):393-417. doi: 10.1007/s11010-023-04735-x. Epub 2023 Apr 20.
4
Downregulation of Sirt6 by CD38 promotes cell senescence and aging.
Aging (Albany NY). 2022 Dec 6;14(23):9730-9757. doi: 10.18632/aging.204425.
5
Increased tissue stiffness triggers contractile dysfunction and telomere shortening in dystrophic cardiomyocytes.
Stem Cell Reports. 2021 Sep 14;16(9):2169-2181. doi: 10.1016/j.stemcr.2021.04.018. Epub 2021 May 20.
6
Prognostic Association of TERC, TERT Gene Polymorphism, and Leukocyte Telomere Length in Acute Heart Failure: A Prospective Study.
Front Endocrinol (Lausanne). 2021 Mar 8;12:650922. doi: 10.3389/fendo.2021.650922. eCollection 2021.
8
Novel aspects of age-protection by spermidine supplementation are associated with preserved telomere length.
Geroscience. 2021 Apr;43(2):673-690. doi: 10.1007/s11357-020-00310-0. Epub 2021 Jan 31.
9
Congenital Diseases of DNA Replication: Clinical Phenotypes and Molecular Mechanisms.
Int J Mol Sci. 2021 Jan 18;22(2):911. doi: 10.3390/ijms22020911.
10
Leukocyte telomere length correlates with hypertrophic cardiomyopathy severity.
Sci Rep. 2018 Jul 25;8(1):11227. doi: 10.1038/s41598-018-29072-8.

本文引用的文献

1
Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy.
Sci Transl Med. 2017 Nov 29;9(418). doi: 10.1126/scitranslmed.aan8081.
3
Classification, Epidemiology, and Global Burden of Cardiomyopathies.
Circ Res. 2017 Sep 15;121(7):722-730. doi: 10.1161/CIRCRESAHA.117.309711.
4
Cardiomyocyte-Specific Telomere Shortening is a Distinct Signature of Heart Failure in Humans.
J Am Heart Assoc. 2017 Sep 7;6(9):e005086. doi: 10.1161/JAHA.116.005086.
5
Cardiomyocyte Regeneration: A Consensus Statement.
Circulation. 2017 Aug 15;136(7):680-686. doi: 10.1161/CIRCULATIONAHA.117.029343. Epub 2017 Jul 6.
6
The extracellular matrix protein agrin promotes heart regeneration in mice.
Nature. 2017 Jul 13;547(7662):179-184. doi: 10.1038/nature22978. Epub 2017 Jun 5.
7
Cardiac telomere length in heart development, function, and disease.
Physiol Genomics. 2017 Jul 1;49(7):368-384. doi: 10.1152/physiolgenomics.00024.2017. Epub 2017 May 26.
8
Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015.
J Am Coll Cardiol. 2017 Jul 4;70(1):1-25. doi: 10.1016/j.jacc.2017.04.052. Epub 2017 May 17.
9
CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice.
Sci Adv. 2017 Apr 12;3(4):e1602814. doi: 10.1126/sciadv.1602814. eCollection 2017 Apr.
10
Long telomeres protect against age-dependent cardiac disease caused by NOTCH1 haploinsufficiency.
J Clin Invest. 2017 May 1;127(5):1683-1688. doi: 10.1172/JCI90338. Epub 2017 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验