Suppr超能文献

组织硬度增加会引发肌营养不良症心肌细胞的收缩功能障碍和端粒缩短。

Increased tissue stiffness triggers contractile dysfunction and telomere shortening in dystrophic cardiomyocytes.

机构信息

Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, A419, Bldg #2, 115 Jinzun Road, Pudong New District, Shanghai 200125, China; Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA; Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.

Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CCSR Room 4215, 269 Campus Drive, Stanford, CA 94305-5175, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA; Departments of Bioengineering and Mechanical Engineering, Stanford University, School of Engineering and School of Medicine, Stanford, CA, USA; Mechanical Engineering and Biomolecular Science and Engineering, University of California, Santa Barbara, CA, USA.

出版信息

Stem Cell Reports. 2021 Sep 14;16(9):2169-2181. doi: 10.1016/j.stemcr.2021.04.018. Epub 2021 May 20.

Abstract

Duchenne muscular dystrophy (DMD) is a rare X-linked recessive disease that is associated with severe progressive muscle degeneration culminating in death due to cardiorespiratory failure. We previously observed an unexpected proliferation-independent telomere shortening in cardiomyocytes of a DMD mouse model. Here, we provide mechanistic insights using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using traction force microscopy, we show that DMD hiPSC-CMs exhibit deficits in force generation on fibrotic-like bioengineered hydrogels, aberrant calcium handling, and increased reactive oxygen species levels. Furthermore, we observed a progressive post-mitotic telomere shortening in DMD hiPSC-CMs coincident with downregulation of shelterin complex, telomere capping proteins, and activation of the p53 DNA damage response. This telomere shortening is blocked by blebbistatin, which inhibits contraction in DMD cardiomyocytes. Our studies underscore the role of fibrotic stiffening in the etiology of DMD cardiomyopathy. In addition, our data indicate that telomere shortening is progressive, contraction dependent, and mechanosensitive, and suggest points of therapeutic intervention.

摘要

杜氏肌营养不良症(DMD)是一种罕见的 X 连锁隐性疾病,与严重的进行性肌肉退化有关,最终会导致心肺衰竭而死亡。我们之前在 DMD 小鼠模型的心肌细胞中观察到了一种意料之外的与增殖无关的端粒缩短。在这里,我们使用人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)提供了机制上的见解。通过牵引力显微镜,我们表明 DMD hiPSC-CMs 在纤维化样生物工程水凝胶上的力产生能力存在缺陷,钙处理异常,活性氧水平增加。此外,我们观察到 DMD hiPSC-CMs 在后有丝分裂中端粒缩短与庇护体复合物、端粒封端蛋白下调以及 p53 DNA 损伤反应激活同时发生。这种端粒缩短可被抑制收缩的 blebbistatin 阻断。我们的研究强调了纤维化僵硬在 DMD 心肌病发病机制中的作用。此外,我们的数据表明端粒缩短是进行性的、收缩依赖性的和机械敏感性的,并提示了治疗干预的要点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验