Suppr超能文献

单切基因组编辑恢复新的肌肉萎缩症小鼠模型中的肌营养不良蛋白表达。

Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy.

机构信息

Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.

Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Sci Transl Med. 2017 Nov 29;9(418). doi: 10.1126/scitranslmed.aan8081.

Abstract

Duchenne muscular dystrophy (DMD) is a severe, progressive muscle disease caused by mutations in the dystrophin gene. The majority of DMD mutations are deletions that prematurely terminate the dystrophin protein. Deletions of exon 50 of the dystrophin gene are among the most common single exon deletions causing DMD. Such mutations can be corrected by skipping exon 51, thereby restoring the dystrophin reading frame. Using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9), we generated a DMD mouse model by deleting exon 50. These ΔEx50 mice displayed severe muscle dysfunction, which was corrected by systemic delivery of adeno-associated virus encoding CRISPR/Cas9 genome editing components. We optimized the method for dystrophin reading frame correction using a single guide RNA that created reframing mutations and allowed skipping of exon 51. In conjunction with muscle-specific expression of Cas9, this approach restored up to 90% of dystrophin protein expression throughout skeletal muscles and the heart of ΔEx50 mice. This method of permanently bypassing DMD mutations using a single cut in genomic DNA represents a step toward clinical correction of DMD mutations and potentially those of other neuromuscular disorders.

摘要

杜氏肌营养不良症(DMD)是一种严重的进行性肌肉疾病,由肌营养不良蛋白基因突变引起。大多数 DMD 突变是导致肌营养不良蛋白过早终止的缺失。肌营养不良蛋白基因外显子 50 的缺失是导致 DMD 的最常见的单个外显子缺失之一。通过跳过外显子 51,可以纠正这种突变,从而恢复肌营养不良蛋白的阅读框。我们使用成簇的规则间隔的短回文重复序列/CRISPR 相关 9(CRISPR/Cas9),通过删除外显子 50 产生了 DMD 小鼠模型。这些 ΔEx50 小鼠表现出严重的肌肉功能障碍,通过系统递送编码 CRISPR/Cas9 基因组编辑组件的腺相关病毒得到纠正。我们使用单链向导 RNA 优化了肌营养不良蛋白阅读框校正的方法,该方法产生了重新框架突变并允许跳过外显子 51。与肌特异性表达 Cas9 结合,这种方法可在 ΔEx50 小鼠的骨骼肌和心脏中恢复高达 90%的肌营养不良蛋白表达。这种使用单个 DNA 碱基对切割永久性绕过 DMD 突变的方法,代表了朝着临床纠正 DMD 突变以及潜在的其他神经肌肉疾病突变迈出的一步。

相似文献

1
Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy.
Sci Transl Med. 2017 Nov 29;9(418). doi: 10.1126/scitranslmed.aan8081.
2
Correction of Three Prominent Mutations in Mouse and Human Models of Duchenne Muscular Dystrophy by Single-Cut Genome Editing.
Mol Ther. 2020 Sep 2;28(9):2044-2055. doi: 10.1016/j.ymthe.2020.05.024. Epub 2020 May 30.
3
In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.
Circ Res. 2017 Sep 29;121(8):923-929. doi: 10.1161/CIRCRESAHA.117.310996. Epub 2017 Aug 8.
5
Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing.
RNA Biol. 2021 Jul;18(7):1048-1062. doi: 10.1080/15476286.2021.1874161. Epub 2021 Jan 20.
7
CRISPR-mediated Genome Editing Restores Dystrophin Expression and Function in mdx Mice.
Mol Ther. 2016 Mar;24(3):564-9. doi: 10.1038/mt.2015.192. Epub 2015 Oct 9.
8
CRISPR-Cas9 Correction of Duchenne Muscular Dystrophy in Mice by a Self-Complementary AAV Delivery System.
Methods Mol Biol. 2023;2587:411-425. doi: 10.1007/978-1-0716-2772-3_21.
9
Adenine base editing-mediated exon skipping restores dystrophin in humanized Duchenne mouse model.
Nat Commun. 2024 Jul 15;15(1):5927. doi: 10.1038/s41467-024-50340-x.

引用本文的文献

2
Optimized genomic editing of a common Duchenne muscular dystrophy mutation in patient-derived muscle cells and a new humanized mouse model.
Mol Ther Nucleic Acids. 2025 May 16;36(2):102569. doi: 10.1016/j.omtn.2025.102569. eCollection 2025 Jun 10.
3
Gene Editing for Duchenne Muscular Dystrophy: From Experimental Models to Emerging Therapies.
Degener Neurol Neuromuscul Dis. 2025 Apr 12;15:17-40. doi: 10.2147/DNND.S495536. eCollection 2025.
4
The road toward AAV-mediated gene therapy of Duchenne muscular dystrophy.
Mol Ther. 2025 May 7;33(5):2035-2051. doi: 10.1016/j.ymthe.2025.03.065. Epub 2025 Apr 2.
5
Single-cut gene therapy in a one-step generated rhesus monkey model of Duchenne muscular dystrophy.
Cell Rep Med. 2025 Apr 15;6(4):102037. doi: 10.1016/j.xcrm.2025.102037. Epub 2025 Mar 26.
7
Gene therapy for genetic diseases: challenges and future directions.
MedComm (2020). 2025 Feb 13;6(2):e70091. doi: 10.1002/mco2.70091. eCollection 2025 Feb.
10
A molecular pathway for cancer cachexia-induced muscle atrophy revealed at single-nucleus resolution.
Cell Rep. 2024 Aug 27;43(8):114587. doi: 10.1016/j.celrep.2024.114587. Epub 2024 Aug 7.

本文引用的文献

1
CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice.
Sci Adv. 2017 Apr 12;3(4):e1602814. doi: 10.1126/sciadv.1602814. eCollection 2017 Apr.
3
FDA Approves Eteplirsen for Duchenne Muscular Dystrophy: The Next Chapter in the Eteplirsen Saga.
Nucleic Acid Ther. 2017 Feb;27(1):1-3. doi: 10.1089/nat.2016.0657. Epub 2016 Dec 8.
4
Eteplirsen Approved for Duchenne Muscular Dystrophy: The FDA Faces a Difficult Choice.
Mol Ther. 2016 Nov;24(11):1884-1885. doi: 10.1038/mt.2016.188.
5
Eteplirsen therapy for Duchenne muscular dystrophy: skipping to the front of the line.
Nat Rev Neurol. 2016 Dec;12(12):675-676. doi: 10.1038/nrneurol.2016.180. Epub 2016 Nov 18.
6
Analyzing CRISPR genome-editing experiments with CRISPResso.
Nat Biotechnol. 2016 Jul 12;34(7):695-7. doi: 10.1038/nbt.3583.
10
Distribution of dystrophin gene deletions in a Chinese population.
J Int Med Res. 2016 Feb;44(1):99-108. doi: 10.1177/0300060515613223. Epub 2016 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验