文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用 CRISPR/Cas9 系统对血红蛋白 E/β-地中海贫血症患者来源的 iPSCs 进行一步式基因校正。

One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system.

机构信息

Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

出版信息

Stem Cell Res Ther. 2018 Feb 26;9(1):46. doi: 10.1186/s13287-018-0779-3.


DOI:10.1186/s13287-018-0779-3
PMID:29482624
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5828150/
Abstract

BACKGROUND: Thalassemia is the most common genetic disease worldwide; those with severe disease require lifelong blood transfusion and iron chelation therapy. The definitive cure for thalassemia is allogeneic hematopoietic stem cell transplantation, which is limited due to lack of HLA-matched donors and the risk of post-transplant complications. Induced pluripotent stem cell (iPSC) technology offers prospects for autologous cell-based therapy which could avoid the immunological problems. We now report genetic correction of the beta hemoglobin (HBB) gene in iPSCs derived from a patient with a double heterozygote for hemoglobin E and β-thalassemia (HbE/β-thalassemia), the most common thalassemia syndrome in Thailand and Southeast Asia. METHODS: We used the CRISPR/Cas9 system to target the hemoglobin E mutation from one allele of the HBB gene by homology-directed repair with a single-stranded DNA oligonucleotide template. DNA sequences of the corrected iPSCs were validated by Sanger sequencing. The corrected clones were differentiated into hematopoietic progenitor and erythroid cells to confirm their multilineage differentiation potential and hemoglobin expression. RESULTS: The hemoglobin E mutation of HbE/β-thalassemia iPSCs was seamlessly corrected by the CRISPR/Cas9 system. The corrected clones were differentiated into hematopoietic progenitor cells under feeder-free and OP9 coculture systems. These progenitor cells were further expanded in erythroid liquid culture system and developed into erythroid cells that expressed mature HBB gene and HBB protein. CONCLUSIONS: Our study provides a strategy to correct hemoglobin E mutation in one step and these corrected iPSCs can be differentiated into hematopoietic stem cells to be used for autologous transplantation in patients with HbE/β-thalassemia in the future.

摘要

背景:地中海贫血症是全球最常见的遗传性疾病;病情严重者需要终身输血和铁螯合治疗。地中海贫血症的根治方法是异体造血干细胞移植,但由于缺乏 HLA 匹配的供体以及移植后并发症的风险,该方法的应用受到限制。诱导多能干细胞(iPSC)技术为基于自体细胞的治疗提供了前景,可避免免疫问题。我们现在报告了对来自血红蛋白 E 和β-地中海贫血(HbE/β-地中海贫血)双重杂合子患者的 iPSC 中β 珠蛋白(HBB)基因的遗传纠正,HbE/β-地中海贫血是泰国和东南亚最常见的地中海贫血综合征。

方法:我们使用 CRISPR/Cas9 系统通过同源定向修复用单链 DNA 寡核苷酸模板靶向 HBB 基因的一个等位基因中的血红蛋白 E 突变。通过 Sanger 测序验证校正后的 iPSC 的 DNA 序列。校正后的克隆被分化为造血祖细胞和红细胞,以确认其多能分化潜能和血红蛋白表达。

结果:CRISPR/Cas9 系统可无缝校正 HbE/β-地中海贫血症 iPSC 中的血红蛋白 E 突变。校正后的克隆在无饲养细胞和 OP9 共培养系统下分化为造血祖细胞。这些祖细胞在红细胞液体培养系统中进一步扩增,并发育成表达成熟 HBB 基因和 HBB 蛋白的红细胞。

结论:我们的研究提供了一种一步校正血红蛋白 E 突变的策略,这些校正后的 iPSC 可分化为造血干细胞,以便将来用于 HbE/β-地中海贫血症患者的自体移植。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8710/5828150/0af76ecc935f/13287_2018_779_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8710/5828150/954d87a0878d/13287_2018_779_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8710/5828150/aa842f23ffd6/13287_2018_779_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8710/5828150/703d6cc101a1/13287_2018_779_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8710/5828150/0af76ecc935f/13287_2018_779_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8710/5828150/954d87a0878d/13287_2018_779_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8710/5828150/aa842f23ffd6/13287_2018_779_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8710/5828150/703d6cc101a1/13287_2018_779_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8710/5828150/0af76ecc935f/13287_2018_779_Fig4_HTML.jpg

相似文献

[1]
One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system.

Stem Cell Res Ther. 2018-2-26

[2]
Correction of Hemoglobin E/Beta-Thalassemia Patient-Derived iPSCs Using CRISPR/Cas9.

Methods Mol Biol. 2021

[3]
Genetic correction of concurrent α- and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology.

Stem Cell Res Ther. 2022-3-7

[4]
The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.

Sci Rep. 2016-9-1

[5]
Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in β-thalassemia-derived iPSCs.

Sci Rep. 2015-7-9

[6]
Improved hematopoietic differentiation efficiency of gene-corrected beta-thalassemia induced pluripotent stem cells by CRISPR/Cas9 system.

Stem Cells Dev. 2015-5-1

[7]
Genetic correction of haemoglobin E in an immortalised haemoglobin E/beta-thalassaemia cell line using the CRISPR/Cas9 system.

Sci Rep. 2022-9-16

[8]
CRISPR/Cas9 system and its applications in human hematopoietic cells.

Blood Cells Mol Dis. 2016-11

[9]
A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease.

Stem Cells Transl Med. 2017-11-21

[10]
Efficient gene correction of an aberrant splice site in β-thalassaemia iPSCs by CRISPR/Cas9 and single-strand oligodeoxynucleotides.

J Cell Mol Med. 2019-10-21

引用本文的文献

[1]
Biosafety considerations triggered by genome-editing technologies.

Biosaf Health. 2025-5-13

[2]
Preclinical efficacy and safety evaluation of BD211 autologous CD34 hematopoietic stem cell injection for transfusion-dependent β-thalassemia in NCG-X mice.

Front Cell Dev Biol. 2025-6-16

[3]
CRISPR technology in human diseases.

MedComm (2020). 2024-7-29

[4]
Precise correction of a spectrum of β-thalassemia mutations in coding and non-coding regions by base editors.

Mol Ther Nucleic Acids. 2024-5-3

[5]
CRISPR/Cas9 Landscape: Current State and Future Perspectives.

Int J Mol Sci. 2023-11-8

[6]
CRISPR/Cas-based gene editing in therapeutic strategies for beta-thalassemia.

Hum Genet. 2023-12

[7]
Recent Advances in CRISPR/Cas9 Delivery Approaches for Therapeutic Gene Editing of Stem Cells.

Stem Cell Rev Rep. 2023-11

[8]
Immortalized erythroid cells as a novel frontier for in vitro blood production: current approaches and potential clinical application.

Stem Cell Res Ther. 2023-5-24

[9]
Investigating The Correction of IVS II-1 (G> A) Mutation in HBB Gene in TLS-12 Cell Line Using CRISPR/Cas9 System.

Cell J. 2023-3-7

[10]
Role of YAP as a Mechanosensing Molecule in Stem Cells and Stem Cell-Derived Hematopoietic Cells.

Int J Mol Sci. 2022-11-23

本文引用的文献

[1]
The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice.

Sci Rep. 2016-9-1

[2]
Combining Single Strand Oligodeoxynucleotides and CRISPR/Cas9 to Correct Gene Mutations in β-Thalassemia-induced Pluripotent Stem Cells.

J Biol Chem. 2016-8-5

[3]
Naïve Induced Pluripotent Stem Cells Generated From β-Thalassemia Fibroblasts Allow Efficient Gene Correction With CRISPR/Cas9.

Stem Cells Transl Med. 2016-1

[4]
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system.

Cell. 2015-10-22

[5]
Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing.

Genome Med. 2015-8-27

[6]
Both TALENs and CRISPR/Cas9 directly target the HBB IVS2-654 (C > T) mutation in β-thalassemia-derived iPSCs.

Sci Rep. 2015-7-9

[7]
Dimeric CRISPR RNA-Guided FokI-dCas9 Nucleases Directed by Truncated gRNAs for Highly Specific Genome Editing.

Hum Gene Ther. 2015-7

[8]
Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells.

Nat Biotechnol. 2015-3-24

[9]
Factor-induced Reprogramming and Zinc Finger Nuclease-aided Gene Targeting Cause Different Genome Instability in β-Thalassemia Induced Pluripotent Stem Cells (iPSCs).

J Biol Chem. 2015-5-8

[10]
Correction of the sickle cell disease mutation in human hematopoietic stem/progenitor cells.

Blood. 2015-4-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索