Suppr超能文献

利用区域气候模式(RegCM)对中亚东部地区气温和降水的模拟及时空格局

Simulation and spatiotemporal pattern of air temperature and precipitation in Eastern Central Asia using RegCM.

作者信息

Meng Xianyong, Long Aihua, Wu Yiping, Yin Gang, Wang Hao, Ji Xiaonan

机构信息

State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin & China Institute of Water Resources and Hydropower Research, Beijing, 100038, P. R. China.

Department of Earth & Environmental Science, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, P. R. China.

出版信息

Sci Rep. 2018 Feb 26;8(1):3639. doi: 10.1038/s41598-018-21997-4.

Abstract

Central Asia is a region that has a large land mass, yet meteorological stations in this area are relatively scarce. To address this data issues, in this study, we selected two reanalysis datasets (the ERA40 and NCEP/NCAR) and downscaled them to 40 × 40 km using RegCM. Then three gridded datasets (the CRU, APHRO, and WM) that were extrapolated from the observations of Central Asian meteorological stations to evaluate the performance of RegCM and analyze the spatiotemporal distribution of precipitation and air temperature. We found that since the 1960s, the air temperature in Xinjiang shows an increasing trend and the distribution of precipitation in the Tianshan area is quite complex. The precipitation is increasing in the south of the Tianshan Mountains (Southern Xinjiang, SX) and decreasing in the mountainous areas. The CRU and WM data indicate that precipitation in the north of the Tianshan Mountains (Northern Xinjiang, NX) is increasing, while the APHRO data show an opposite trend. The downscaled results from RegCM are generally consistent with the extrapolated gridded datasets in terms of the spatiotemporal patterns. We believe that our results can provide useful information in developing a regional climate model in Central Asia where meteorological stations are scarce.

摘要

中亚地区地域辽阔,但该地区的气象站相对较少。为解决这一数据问题,在本研究中,我们选取了两个再分析数据集(ERA40和NCEP/NCAR),并使用RegCM将其降尺度至40×40千米。然后,利用从中亚气象站观测数据外推得到的三个网格化数据集(CRU、APHRO和WM)来评估RegCM的性能,并分析降水和气温的时空分布。我们发现,自20世纪60年代以来,新疆地区气温呈上升趋势,天山地区降水分布颇为复杂。天山山脉以南(新疆南部,SX)降水增加,山区降水减少。CRU和WM数据表明,天山山脉以北(新疆北部,NX)降水增加,而APHRO数据则显示出相反的趋势。RegCM的降尺度结果在时空模式方面总体上与外推的网格化数据集一致。我们相信,我们的结果可为在气象站稀缺的中亚地区开发区域气候模型提供有用信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ead/5832148/55d1cb7c09f2/41598_2018_21997_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验