Lagares Antonio, Valverde Claudio
Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Universidad Nacional de Quilmes-CONICET, Roque Sáenz Peña 352, Bernal, B1876BXD, Argentina.
Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-CONICET, Bernal, Argentina.
Methods Mol Biol. 2018;1737:31-45. doi: 10.1007/978-1-4939-7634-8_2.
So far, every sequenced bacterial transcriptome encompasses hundreds of small regulatory noncoding RNAs (sRNAs). From those sRNAs that have been already characterized, we learned that their regulatory functions could span over almost every bacterial process, mostly acting at the posttranscriptional control of gene expression (Wagner and Romby, Adv Genet 90:133-208, 2015). Canonical molecular mechanisms of sRNA action have been described to rely on both sequence and/or structural traits of the RNA molecule. As for protein-coding genes, the conservation of sRNAs among species suggests conserved and adjusted functions across evolution. Knowing the phylogenetic distribution of an sRNA gene and how its functional traits have evolved may help to get a broad picture of its biological role in each single species. Here, we present a simple computational workflow to identify close and distant sRNA homologs present in sequenced bacterial genomes, which allows defining novel sRNA families. This strategy is based on the use of Covariance Models (CM) and assumes the conservation of sequence and structure of functional sRNA genes throughout evolution. Moreover, by carefully inspecting the conservation of the close genomic context of every member of the RNA family and how the patterns of microsynteny follow the path of species evolution, it is possible to define subgroups of sRNA orthologs, which in turn enables the definition of RNA subfamilies.
到目前为止,每个已测序的细菌转录组都包含数百个小的调控非编码RNA(sRNA)。从那些已经被表征的sRNA中,我们了解到它们的调控功能几乎可以涵盖细菌的每一个过程,主要作用于基因表达的转录后控制(Wagner和Romby,《遗传学进展》90:133 - 208,2015)。sRNA作用的经典分子机制已被描述为依赖于RNA分子的序列和/或结构特征。与蛋白质编码基因一样,sRNA在物种间的保守性表明其在进化过程中具有保守且经过调整的功能。了解sRNA基因的系统发育分布及其功能特征是如何进化的,可能有助于全面了解其在每个单一物种中的生物学作用。在这里,我们提出了一个简单的计算流程,用于识别已测序细菌基因组中存在的近缘和远缘sRNA同源物,这有助于定义新的sRNA家族。该策略基于协方差模型(CM)的使用,并假设功能性sRNA基因的序列和结构在整个进化过程中是保守的。此外,通过仔细检查RNA家族每个成员紧密基因组背景的保守性以及微共线性模式如何跟随物种进化路径,可以定义sRNA直系同源物的亚组,进而能够定义RNA亚家族。