Stimple Samuel D, Lahiry Ashwin, Taris Joseph E, Wood David W, Lease Richard A
William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.
Department of Microbiology, The Ohio State University, Columbus, OH, USA.
Methods Mol Biol. 2018;1737:373-391. doi: 10.1007/978-1-4939-7634-8_21.
RNA biology and RNA engineering are subjects of growing interest due to recent advances in our understanding of the diverse cellular functions of RNAs, including their roles as genetic regulators. The noncoding small RNAs (sRNAs) of bacteria are a fundamental basis of regulatory control that can regulate gene expression via antisense base-pairing to one or more target mRNAs. The sRNAs can be customized to generate a range of mRNA translation rates and stabilities. The sRNAs can be applied as a platform for metabolic engineering, to control expression of genes of interest by following relatively straightforward design rules (Kushwaha et al., ACS Synth Biol 5:795-809, 2016). However, the ab initio design of functional sRNAs to precise specifications of gene control is not yet possible. Consequently, there is a need for tools to rapidly profile uncharacterized sRNAs in vivo, to screen sRNAs against "new/novel" targets, and (in the case of metabolic engineering) to develop engineered sRNAs for regulatory function against multiple desired mRNA targets. To address this unmet need, we previously constructed a modular genetic system for assaying sRNA activity in vivo against specifiable mRNA sequences, using microtiter plate assays for high-throughput productivity. This sRNA design platform consists of three modular plasmids: one plasmid contains an inducible sRNA and the RNA chaperone Hfq; the second contains an inducible fluorescent reporter protein and a LacY mutant transporter protein for inducer molecules; and the third plasmid contains a second inducible fluorescent reporter protein. The second reporter gene makes it possible to screen for sRNA regulators that have activity against multiple mRNAs. We describe the protocol for engineering sRNAs with novel regulatory activity using this system. This sRNA prototyping regimen could also be employed for validating predicted mRNA targets of uncharacterized, naturally occurring sRNAs or for testing hypotheses about the predicted roles of genes, including essential genes, in cellular metabolism and other processes, by using customized antisense sRNAs to knock down or tune down gene expression.
由于我们对RNA多种细胞功能(包括其作为基因调节因子的作用)的理解取得了最新进展,RNA生物学和RNA工程成为越来越受关注的学科。细菌的非编码小RNA(sRNA)是调节控制的基本基础,它可以通过与一个或多个靶标mRNA进行反义碱基配对来调节基因表达。sRNA可以进行定制,以产生一系列的mRNA翻译速率和稳定性。sRNA可以用作代谢工程的平台,通过遵循相对简单的设计规则来控制感兴趣基因的表达(Kushwaha等人,《美国化学会合成生物学》5:795 - 809,2016)。然而,按照精确的基因控制规格进行功能性sRNA的从头设计目前还无法实现。因此,需要一些工具来在体内快速分析未表征的sRNA,针对“新的/新颖的”靶标筛选sRNA,以及(在代谢工程的情况下)开发针对多个期望的mRNA靶标具有调节功能的工程化sRNA。为了满足这一未被满足的需求,我们之前构建了一个模块化遗传系统,用于在体内针对可指定的mRNA序列分析sRNA活性,采用微孔板检测法以实现高通量生产。这个sRNA设计平台由三个模块化质粒组成:一个质粒包含一个可诱导的sRNA和RNA伴侣蛋白Hfq;第二个质粒包含一个可诱导的荧光报告蛋白和一个用于诱导分子的LacY突变转运蛋白;第三个质粒包含第二个可诱导的荧光报告蛋白。第二个报告基因使得筛选对多个mRNA具有活性的sRNA调节因子成为可能。我们描述了使用该系统设计具有新型调节活性的sRNA的方案。这种sRNA原型方案也可用于验证未表征的天然存在的sRNA的预测mRNA靶标,或通过使用定制的反义sRNA来敲低或下调基因表达,来测试关于基因(包括必需基因)在细胞代谢和其他过程中预测作用的假设。