Suppr超能文献

磷酸解外切核糖核酸酶多核苷酸磷酸化酶和核糖核酸酶PH稳定小RNA并促进对其mRNA靶标的调控。

The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets.

作者信息

Cameron Todd A, De Lay Nicholas R

机构信息

Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA.

Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA

出版信息

J Bacteriol. 2016 Nov 18;198(24):3309-3317. doi: 10.1128/JB.00624-16. Print 2016 Dec 15.

Abstract

UNLABELLED

Gene regulation by base pairing between small noncoding RNAs (sRNAs) and their mRNA targets is an important mechanism that allows bacteria to maintain homeostasis and respond to dynamic environments. In Gram-negative bacteria, sRNA pairing and regulation are mediated by several RNA-binding proteins, including the sRNA chaperone Hfq and polynucleotide phosphorylase (PNPase). PNPase and its homolog RNase PH together represent the two 3' to 5' phosphorolytic exoribonucleases found in Escherichia coli; however, the role of RNase PH in sRNA regulation has not yet been explored and reported. Here, we have examined in detail how PNPase and RNase PH interact to support sRNA stability, activity, and base pairing in exponential and stationary growth conditions. Our results indicate that these proteins facilitate the stability and regulatory function of the sRNAs RyhB, CyaR, and MicA during exponential growth. PNPase further appears to contribute to pairing between RyhB and its mRNA targets. During stationary growth, each sRNA responded differently to the absence or presence of PNPase and RNase PH. Finally, our results suggest that PNPase and RNase PH stabilize only Hfq-bound sRNAs. Taken together, these results confirm and extend previous findings that PNPase participates in sRNA regulation and reveal that RNase PH serves a similar, albeit more limited, role as well. These proteins may, therefore, act to protect sRNAs from spurious degradation while also facilitating regulatory pairing with their targets.

IMPORTANCE

In many bacteria, Hfq-dependent base-pairing sRNAs facilitate rapid changes in gene expression that are critical for maintaining homeostasis and responding to stress and environmental changes. While a role for Hfq in this process was identified more than 2 decades ago, the identity and function of the other proteins required for Hfq-dependent regulation by sRNAs have not been resolved. Here, we demonstrate that PNPase and RNase PH, the two phosphorolytic RNases in E. coli, stabilize sRNAs against premature degradation and, in the case of PNPase, also accelerate regulation by sRNA-mRNA pairings for certain sRNAs. These findings are the first to demonstrate that RNase PH influences and supports sRNA regulation and suggest shared and distinct roles for these phosphorolytic RNases in this process.

摘要

未标记

小非编码RNA(sRNA)与其mRNA靶标之间通过碱基配对进行基因调控是一种重要机制,使细菌能够维持体内平衡并响应动态环境。在革兰氏阴性菌中,sRNA配对和调控由几种RNA结合蛋白介导,包括sRNA伴侣蛋白Hfq和多核苷酸磷酸化酶(PNPase)。PNPase及其同源物核糖核酸酶PH共同代表了大肠杆菌中发现的两种3'至5'磷酸解外切核糖核酸酶;然而,核糖核酸酶PH在sRNA调控中的作用尚未得到探索和报道。在此,我们详细研究了PNPase和核糖核酸酶PH如何相互作用以在指数生长期和稳定期生长条件下支持sRNA的稳定性、活性和碱基配对。我们的结果表明,这些蛋白质在指数生长期促进了sRNAs RyhB、CyaR和MicA的稳定性和调控功能。PNPase似乎还进一步促进了RyhB与其mRNA靶标之间的配对。在稳定期生长期间,每种sRNA对PNPase和核糖核酸酶PH的缺失或存在反应不同。最后,我们的结果表明PNPase和核糖核酸酶PH仅稳定与Hfq结合的sRNAs。综上所述,这些结果证实并扩展了先前关于PNPase参与sRNA调控的发现,并揭示核糖核酸酶PH也发挥了类似但更有限的作用。

重要性

在许多细菌中,依赖Hfq的碱基配对sRNAs促进基因表达的快速变化,这对于维持体内平衡以及应对压力和环境变化至关重要。虽然Hfq在这一过程中的作用在20多年前就已被确定,但sRNAs依赖Hfq进行调控所需的其他蛋白质的身份和功能尚未得到解决。在此,我们证明了大肠杆菌中的两种磷酸解核糖核酸酶PNPase和核糖核酸酶PH可稳定sRNAs以防止过早降解,并且就PNPase而言,还可加速某些sRNAs通过sRNA-mRNA配对进行的调控。这些发现首次证明核糖核酸酶PH影响并支持sRNA调控,并表明这些磷酸解核糖核酸酶在此过程中具有共同和不同的作用。

相似文献

3
Role of polynucleotide phosphorylase in sRNA function in Escherichia coli.
RNA. 2011 Jun;17(6):1172-89. doi: 10.1261/rna.2531211. Epub 2011 Apr 28.
4
Target recognition by RNase E RNA-binding domain AR2 drives sRNA decay in the absence of PNPase.
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2208022119. doi: 10.1073/pnas.2208022119. Epub 2022 Nov 21.
5
A cooperative PNPase-Hfq-RNA carrier complex facilitates bacterial riboregulation.
Mol Cell. 2021 Jul 15;81(14):2901-2913.e5. doi: 10.1016/j.molcel.2021.05.032. Epub 2021 Jun 21.
7
Poly(A) polymerase is required for RyhB sRNA stability and function in .
RNA. 2018 Nov;24(11):1496-1511. doi: 10.1261/rna.067181.118. Epub 2018 Jul 30.
9
Rapid degradation of Hfq-free RyhB in Yersinia pestis by PNPase independent of putative ribonucleolytic complexes.
Biomed Res Int. 2014;2014:798918. doi: 10.1155/2014/798918. Epub 2014 Apr 10.
10
Novel role for RNase PH in the degradation of structured RNA.
J Bacteriol. 2012 Aug;194(15):3883-90. doi: 10.1128/JB.06554-11. Epub 2012 May 18.

引用本文的文献

1
CsrA Shows Selective Regulation of sRNA-mRNA Networks.
bioRxiv. 2023 Mar 29:2023.03.29.534774. doi: 10.1101/2023.03.29.534774.
2
Role of the 5' end phosphorylation state for small RNA stability and target RNA regulation in bacteria.
Nucleic Acids Res. 2023 Jun 9;51(10):5125-5143. doi: 10.1093/nar/gkad226.
3
Target recognition by RNase E RNA-binding domain AR2 drives sRNA decay in the absence of PNPase.
Proc Natl Acad Sci U S A. 2022 Nov 29;119(48):e2208022119. doi: 10.1073/pnas.2208022119. Epub 2022 Nov 21.
4
A cooperative PNPase-Hfq-RNA carrier complex facilitates bacterial riboregulation.
Mol Cell. 2021 Jul 15;81(14):2901-2913.e5. doi: 10.1016/j.molcel.2021.05.032. Epub 2021 Jun 21.
7
Defining the impact of exoribonucleases in the shift between exponential and stationary phases.
Sci Rep. 2019 Nov 7;9(1):16271. doi: 10.1038/s41598-019-52453-6.
8
Bacterial ribonucleases and their roles in RNA metabolism.
Crit Rev Biochem Mol Biol. 2019 Jun;54(3):242-300. doi: 10.1080/10409238.2019.1651816.
10
In vivo 3'-to-5' exoribonuclease targetomes of .
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11814-11819. doi: 10.1073/pnas.1809663115. Epub 2018 Oct 31.

本文引用的文献

2
Identification of bacterial sRNA regulatory targets using ribosome profiling.
Nucleic Acids Res. 2015 Dec 2;43(21):10308-20. doi: 10.1093/nar/gkv1158. Epub 2015 Nov 5.
3
Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition.
EMBO J. 2015 Oct 14;34(20):2557-73. doi: 10.15252/embj.201591569. Epub 2015 Sep 15.
4
Paradoxical suppression of small RNA activity at high Hfq concentrations due to random-order binding.
Nucleic Acids Res. 2015 Sep 30;43(17):8502-15. doi: 10.1093/nar/gkv777. Epub 2015 Aug 10.
5
Small RNAs Regulate Primary and Secondary Metabolism in Gram-negative Bacteria.
Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MBP-0009-2014.
6
Structure of bacterial regulatory RNAs determines their performance in competition for the chaperone protein Hfq.
Biochemistry. 2015 Feb 10;54(5):1157-70. doi: 10.1021/bi500741d. Epub 2015 Jan 26.
7
Small RNA functions in carbon metabolism and virulence of enteric pathogens.
Front Cell Infect Microbiol. 2014 Jul 15;4:91. doi: 10.3389/fcimb.2014.00091. eCollection 2014.
8
Small RNA modules confer different stabilities and interact differently with multiple targets.
PLoS One. 2013;8(1):e52866. doi: 10.1371/journal.pone.0052866. Epub 2013 Jan 22.
9
Mutations in interaction surfaces differentially impact E. coli Hfq association with small RNAs and their mRNA targets.
J Mol Biol. 2013 Oct 9;425(19):3678-97. doi: 10.1016/j.jmb.2013.01.006. Epub 2013 Jan 11.
10
The seed region of a small RNA drives the controlled destruction of the target mRNA by the endoribonuclease RNase E.
Mol Cell. 2012 Sep 28;47(6):943-53. doi: 10.1016/j.molcel.2012.07.015. Epub 2012 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验