Suppr超能文献

两种缠绕蛇类(横斑锦蛇和锈链腹链蛇)的轴向肌定量研究。

Quantitative axial myology in two constricting snakes: Lampropeltis holbrooki and Pantherophis obsoletus.

机构信息

Department of Biology & Environmental Health, Missouri Southern State University, Joplin, MO, USA.

Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA.

出版信息

J Anat. 2018 Jun;232(6):1016-1024. doi: 10.1111/joa.12799. Epub 2018 Feb 27.

Abstract

A snake's body represents an extreme degree of elongation with immense muscle complexity. Snakes have approximately 25 different muscles on each side of the body at each vertebra. These muscles serially repeat, overlap, interconnect, and rarely insert parallel to the vertebral column. The angled muscles mean that simple measurements of anatomical cross-sectional area (ACSA, perpendicular to the long-axis of the body) serve only as proxies for the primary determinant of muscle force, physiological cross-sectional area (PCSA, area perpendicular to the muscle fibers). Here, I describe and quantify the musculature of two intraguild constrictors: kingsnakes (Lampropeltis holbrooki) and ratsnakes (Pantherophis obsoletus) whose predation performance varies considerably. Kingsnakes can produce significantly higher constriction pressures compared with ratsnakes of similar size. In both snakes, I provide qualitative descriptions, detail previously undescribed complexity, identify a new lateral muscle, and provide some of the first quantitative measures of individual muscle and whole-body PCSA. Furthermore, I compare measurements of ACSA with measurements of PCSA. There was no significant difference in PCSA of muscles between kingsnakes and ratsnakes. There is, however, a strong relationship between ACSA and PCSA measurements. I could not identify a significant difference in musculature between kingsnakes and ratsnakes that explains their different levels of constriction performance. Unmeasured components of muscle function, such as endurance and force production, might account for differences in performance between two species with similar muscle structure.

摘要

蛇的身体代表了极度的伸长程度和极其复杂的肌肉结构。每条蛇在每个脊椎的身体两侧大约有 25 块不同的肌肉。这些肌肉连续重复、重叠、相互连接,很少与脊柱平行插入。倾斜的肌肉意味着,对解剖横截面积(与身体长轴垂直)的简单测量仅作为肌肉力量的主要决定因素——生理横截面积(与肌肉纤维垂直的面积)的代理。在这里,我描述并量化了两种内部捕食者的肌肉组织:王蛇(Lampropeltis holbrooki)和鼠蛇(Pantherophis obsoletus),它们的捕食表现差异很大。王蛇可以产生比体型相似的鼠蛇高得多的收缩压力。在这两种蛇中,我提供了定性描述,详细描述了以前未描述的复杂性,确定了一种新的侧肌,并提供了一些关于个体肌肉和整个身体生理横截面积的首次定量测量。此外,我还比较了 ACSA 与 PCSA 的测量结果。王蛇和鼠蛇的肌肉之间的 PCSA 没有显著差异。然而,ACSA 和 PCSA 测量值之间存在很强的关系。我无法确定王蛇和鼠蛇之间的肌肉组织有显著差异,无法解释它们不同的收缩性能。肌肉功能的未测量成分,如耐力和力量产生,可能解释了两种具有相似肌肉结构的物种之间性能的差异。

相似文献

1
Quantitative axial myology in two constricting snakes: Lampropeltis holbrooki and Pantherophis obsoletus.
J Anat. 2018 Jun;232(6):1016-1024. doi: 10.1111/joa.12799. Epub 2018 Feb 27.
2
The king of snakes: performance and morphology of intraguild predators () and their prey ().
J Exp Biol. 2017 Mar 15;220(Pt 6):1154-1161. doi: 10.1242/jeb.147082.
3
The scaling of terrestrial striking performance in western ratsnakes (Pantherophis obsoletus).
J Exp Zool A Ecol Integr Physiol. 2020 Feb;333(2):96-103. doi: 10.1002/jez.2328. Epub 2019 Oct 17.
7
Evaluation of the strength-size relationship in vivo using various muscle size indices.
Med Sci Sports Exerc. 2000 Jul;32(7):1307-13. doi: 10.1097/00005768-200007000-00019.
9

引用本文的文献

1
Evolutionary convergence of muscle architecture in relation to locomotor ecology in snakes.
J Anat. 2023 May;242(5):862-871. doi: 10.1111/joa.13823. Epub 2023 Feb 2.
2
A Biomimetic Method to Replicate the Natural Fluid Movements of Swimming Snakes to Design Aquatic Robots.
Biomimetics (Basel). 2022 Dec 3;7(4):223. doi: 10.3390/biomimetics7040223.
3
Corn Snakes Show Consistent Sarcomere Length Ranges Across Muscle Groups and Ontogeny.
Integr Org Biol. 2022 Sep 8;4(1):obac040. doi: 10.1093/iob/obac040. eCollection 2022.
5
The axial anatomy of monitor lizards (Varanidae).
J Anat. 2018 Nov;233(5):636-643. doi: 10.1111/joa.12872. Epub 2018 Aug 6.

本文引用的文献

2
Propulsive action of a snake pushing against a single site: Its combined analysis.
J Morphol. 1989 Sep;201(3):315-329. doi: 10.1002/jmor.1052010310.
3
The king of snakes: performance and morphology of intraguild predators () and their prey ().
J Exp Biol. 2017 Mar 15;220(Pt 6):1154-1161. doi: 10.1242/jeb.147082.
4
Post-molecular systematics and the future of phylogenetics.
Trends Ecol Evol. 2015 Jul;30(7):384-9. doi: 10.1016/j.tree.2015.04.016. Epub 2015 May 23.
5
The scaling of tongue projection in the veiled chameleon, Chamaeleo calyptratus.
Zoology (Jena). 2014 Aug;117(4):227-36. doi: 10.1016/j.zool.2014.01.001. Epub 2014 Mar 19.
6
Electromyography and the evolution of motor control: limitations and insights.
Integr Comp Biol. 2008 Aug;48(2):261-71. doi: 10.1093/icb/icn025. Epub 2008 Apr 28.
8
Fast and furious: effects of body size on strike performance in an arboreal viper Trimeresurus (Cryptelytrops) albolabris.
J Exp Zool A Ecol Genet Physiol. 2011 Jan 1;315(1):22-9. doi: 10.1002/jez.645. Epub 2010 Sep 17.
9
The functional morphology of hooding in cobras.
J Exp Biol. 2010 May;213(Pt 9):1521-8. doi: 10.1242/jeb.034447.
10
How a heavy-bodied snake strikes quickly: high-power axial musculature in the puff adder (Bitis arietans).
J Exp Zool A Ecol Genet Physiol. 2010 Feb 1;313(2):114-21. doi: 10.1002/jez.579.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验