Suppr超能文献

分段概率回归模型,用于从硬膜外和硬脑膜 ECoG 信号中解码手部运动轨迹。

A piecewise probabilistic regression model to decode hand movement trajectories from epidural and subdural ECoG signals.

机构信息

Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology (IUST), Iran Neural Technology Research Centre, Tehran, Iran.

出版信息

J Neural Eng. 2018 Jun;15(3):036020. doi: 10.1088/1741-2552/aab290. Epub 2018 Feb 27.

Abstract

OBJECTIVE

The primary concern of this study is to develop a probabilistic regression method that would improve the decoding of the hand movement trajectories from epidural ECoG as well as from subdural ECoG signals.

APPROACH

The model is characterized by the conditional expectation of the hand position given the ECoG signals. The conditional expectation of the hand position is then modeled by a linear combination of the conditional probability density functions defined for each segment of the movement. Moreover, a spatial linear filter is proposed for reducing the dimension of the feature space. The spatial linear filter is applied to each frequency band of the ECoG signals and extract the features with highest decoding performance.

MAIN RESULTS

For evaluating the proposed method, a dataset including 28 ECoG recordings from four adult Japanese macaques is used. The results show that the proposed decoding method outperforms the results with respect to the state of the art methods using this dataset. The relative kinematic information of each frequency band is also investigated using mutual information and decoding performance. The decoding performance shows that the best performance was obtained for high gamma bands from 50 to 200 Hz as well as high frequency ECoG band from 200 to 400 Hz for subdural recordings. However, the decoding performance was decreased for these frequency bands using epidural recordings. The mutual information shows that, on average, the high gamma band from 50 to 200 Hz and high frequency ECoG band from 200 to 400 Hz contain significantly more information than the average of the rest of the frequency bands [Formula: see text] for both subdural and epidural recordings. The results of high resolution time-frequency analysis show that ERD/ERS patterns in all frequency bands could reveal the dynamics of the ECoG responses during the movement. The onset and offset of the movement can be clearly identified by the ERD/ERS patterns.

SIGNIFICANCE

Reliable decoding the kinematic information from the brain signals paves the way for robust control of external devices.

摘要

目的

本研究的主要关注点是开发一种概率回归方法,以提高从硬膜外 ECoG 信号和硬膜下 ECoG 信号中解码手部运动轨迹的能力。

方法

该模型的特点是在手位置的条件期望给定 ECoG 信号。然后,通过对运动每个阶段的条件概率密度函数的线性组合来对位置的条件期望进行建模。此外,还提出了一种空间线性滤波器来降低特征空间的维数。该空间线性滤波器应用于 ECoG 信号的每个频带,并提取解码性能最高的特征。

主要结果

为了评估所提出的方法,使用包括来自四只成年日本猕猴的 28 个 ECoG 记录的数据集。结果表明,与使用该数据集的最新方法相比,所提出的解码方法具有更好的性能。还使用互信息和解码性能研究了每个频带的相对运动信息。解码性能表明,对于硬膜下记录,从 50 到 200 Hz 的高伽马频段以及从 200 到 400 Hz 的高频 ECoG 频段获得了最佳性能。然而,对于这些频率带,使用硬膜外记录会降低解码性能。互信息表明,平均而言,从 50 到 200 Hz 的高伽马频段和从 200 到 400 Hz 的高频 ECoG 频段比其余频段的平均值包含更多的信息[公式:见文本],无论是硬膜下还是硬膜外记录。高分辨率时频分析的结果表明,所有频带中的 ERD/ERS 模式都可以揭示运动过程中 ECoG 响应的动态。通过 ERD/ERS 模式可以清楚地识别运动的起始和结束。

意义

从脑信号中可靠地解码运动信息为外部设备的稳健控制铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验